Park S, Srivastava D, Cho K
Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA.
J Nanosci Nanotechnol. 2001 Mar;1(1):75-81. doi: 10.1166/jnn.2001.015.
Models of encapsulated nuclear spin 1/2 1H and 31P atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with an ab initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A 1H atom encapsulated in a fully deuterated fullerene, C20D20, forms the first model system and ab initio calculation shows that the 1H atom is stable in its atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A 31P atom positioned at the center of a diamond nanocrystallite is the second model system, and 31P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV. Vacancy formation energy is 6 eV in diamond, so the substitutional 31P atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and the weakly bound (valance) donor electron in both systems is found to be suitable for single qubit applications, whereas the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions, facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed within the context of our proposed solid-state qubits.
分别提出了将核自旋为1/2的氢原子和磷-31原子封装在富勒烯和金刚石纳米微晶中的模型,并采用从头算局域密度泛函方法进行研究,以探讨其在固态量子计算机中作为单量子比特(qubit)的潜在应用。封装在全氘化富勒烯C20D20中的氢原子构成了第一个模型系统,从头算计算表明,氢原子在富勒烯中心处于原子态时是稳定的,逃逸势垒约为1电子伏特。位于金刚石纳米微晶中心的磷-31原子是第二个模型系统,发现磷-31原子在替代位置相对于间隙位置稳定15电子伏特。金刚石中的空位形成能为6电子伏特,因此替代的磷-31原子在纳米微晶形成机制过程中抵抗扩散将是稳定的。发现两个系统中核自旋与弱束缚(价)施主电子之间的耦合适用于单量子比特应用,而(价)施主电子波函数的空间分布优先沿某些晶格方向扩展,有利于两个或更多量子比特应用。在我们提出的固态量子比特背景下,讨论了在实际量子计算机中制造这两种模型固态量子比特系统途径的可行性。