Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2014 Nov 7;113(19):197601. doi: 10.1103/PhysRevLett.113.197601. Epub 2014 Nov 3.
We demonstrate a method of magnetic resonance imaging with single nuclear-spin sensitivity under ambient conditions. Our method employs isolated electronic-spin quantum bits (qubits) as magnetic resonance "reporters" on the surface of high purity diamond. These spin qubits are localized with nanometer-scale uncertainty, and their quantum state is coherently manipulated and measured optically via a proximal nitrogen-vacancy color center located a few nanometers below the diamond surface. This system is then used for sensing, coherent coupling, and imaging of individual proton spins on the diamond surface with angstrom resolution. Our approach may enable direct structural imaging of complex molecules that cannot be accessed from bulk studies. It realizes a new platform for probing novel materials, monitoring chemical reactions, and manipulation of complex systems on surfaces at a quantum level.
我们展示了一种在环境条件下具有单核自旋灵敏度的磁共振成像方法。我们的方法采用孤立的电子自旋量子位(qubit)作为高纯金刚石表面上的磁共振“报告者”。这些自旋量子位具有纳米级不确定性的定位,并且它们的量子态通过位于金刚石表面下方几纳米处的近邻氮空位色心通过光学进行相干操纵和测量。然后,该系统用于以埃分辨率对金刚石表面上的单个质子自旋进行感应、相干耦合和成像。我们的方法可以实现无法从体相研究中获得的复杂分子的直接结构成像。它实现了一个新的平台,用于在量子水平上探测复杂表面上的新型材料、监测化学反应和操纵复杂系统。