Suppr超能文献

层级制度对概率判断的影响。

The influence of hierarchy on probability judgment.

作者信息

Lagnado David A, Shanks David R

机构信息

Department of Psychology, University College London, Gower Street, WC1E 6BT London, UK.

出版信息

Cognition. 2003 Sep;89(2):157-78. doi: 10.1016/s0010-0277(03)00099-4.

Abstract

Consider the task of predicting which soccer team will win the next World Cup. The bookmakers may judge Brazil to be the team most likely to win, but also judge it most likely that a European rather than a Latin American team will win. This is an example of a non-aligned hierarchy structure: the most probable event at the subordinate level (Brazil wins) appears to be inconsistent with the most probable event at the superordinate level (a European team wins). In this paper we exploit such structures to investigate how people make predictions based on uncertain hierarchical knowledge. We distinguish between aligned and non-aligned environments, and conjecture that people assume alignment. Participants were exposed to a non-aligned training set in which the most probable superordinate category predicted one outcome, whereas the most probable subordinate category predicted a different outcome. In the test phase participants allowed their initial probability judgments about category membership to shift their final ratings of the probability of the outcome, even though all judgments were made on the basis of the same statistical data. In effect people were primed to focus on the most likely path in an inference tree, and neglect alternative paths. These results highlight the importance of the level at which statistical data are represented, and suggest that when faced with hierarchical inference problems people adopt a simplifying heuristic that assumes alignment.

摘要

考虑预测下一届世界杯哪个足球队会夺冠的任务。博彩公司可能认为巴西是最有可能获胜的球队,但同时也认为欧洲球队而非拉丁美洲球队最有可能夺冠。这是一个非对齐层次结构的例子:下属层级中最有可能发生的事件(巴西获胜)似乎与上级层级中最有可能发生的事件(欧洲球队获胜)不一致。在本文中,我们利用这样的结构来研究人们如何基于不确定的层次知识进行预测。我们区分了对齐和非对齐环境,并推测人们假定存在对齐关系。参与者接触到一个非对齐的训练集,其中最有可能的上级类别预测了一种结果,而最有可能的下属类别预测了不同的结果。在测试阶段,参与者让他们对类别归属的初始概率判断改变了他们对结果概率的最终评级,尽管所有判断都是基于相同的统计数据做出的。实际上,人们被引导去关注推理树中最可能的路径,而忽略了其他路径。这些结果凸显了统计数据呈现层级的重要性,并表明当面对层次推理问题时,人们采用了一种假定对齐的简化启发式方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验