A further investigation has been made of the way in which the fluorescent probes 1-anilino-naphthalene-8-sulphonate and 2-(N-methyl-anilino) naphthalene-6-sulphonate report on the energised state of bovine heart submitochondrial particles. 2. A comparison of the probe responses to energisation with ATP or to a potassium diffusion potential has been made. The fluorescence enhancements seen in these two cases have different characteristics, and in view of this it is questioned whether a substrate generated energised state of a submitochondrial particle can be equated with a trans-membrane potassium diffusion potential. 3. Substitution of ITP for ATP reduces the rate at which either of the probes respond to energisation. In contrast reducing the ATPase activity of the particles by treatment with the covalent ATPase inhibitors 4-chloro-7-nitrobenzofurazan or N,N'-dicyclohexyl-carbodiimide has no effect on this rate. This finding that the rate of the fluorescence changes is directly sensitive to events at the level of the ATPase, but not to the total ATPase activity, suggests that this rate may not be controlled by a delocalised energised state. Reduction of ATPase activity decreases the extent of the fluorescence enhancement and a relationship between the change in probe fluorescence and ATPase activity is given. 4. The results in this paper are discussed in the context of the mechanisms which have been proposed to account for the fluorescence enhancements of N-aryl naphthalene sulphonate probes upon energisation of submitochondrial particles.