Hoenigsberg H
Instituto de Genética Evolutiva y Biologia Molecular, Universidad Manuela Beltrán, Bogotá, DC, Colombia.
Genet Mol Res. 2003 Mar 31;2(1):7-28.
The evolvability of vertebrate systems involves various mechanisms that eventually generate cooperative and nonlethal functional variation on which Darwinian selection can operate. It is a truism that to get vertebrate animals to develop a coherent machine they first had to inherit the right multicellular ontogeny. The ontogeny of a metazoan involves cell lineages that progressively deny their own capacity for increase and for totipotency in benefit of the collective interest of the individual. To achieve such cell altruism Darwinian dynamics rescinded its original unicellular mandate to reproduce. The distinction between heritability at the level of the cell lineage and at the level of the individual is crucial. However, its implications have seldom been explored in depth. While all out reproduction is the Darwinian measure of success among unicellular organisms, a high replication rate of cell lineages within the organism may be deleterious to the individual as a functional unit. If a harmoniously functioning unit is to evolve, mechanisms must have evolved whereby variants that increase their own replication rate by failing to accept their own somatic duties are controlled. For questions involving organelle origins, see Godelle and Reboud, 1995 and Hoekstra, 1990. In other words, modifiers of conflict that control cell lineages with conflicting genes and new mutant replication rates that deviate from their somatic duties had to evolve. Our thesis is that selection at the level of the (multicellular) individual must have opposed selection at the level of the cell lineage. The metazoan embryo is not immune to this conflict especially with the evolution of set-aside cells and other modes of self-policing modifiers (Blackstone and Ellison, 1998; Ransick et al., 1996. In fact, the conflict between the two selection processes permitted a Lamarckian soma-to-germline feedback loop. This new element in metazoan ontogeny became the evolvability of the vertebrate adaptive immune system and life as we know it now. We offer the hypothesis that metazoan evolution solved this ancient conflict by evolving an immunogenetic mechanism that responds with rapid Lamarckian efficiency by retaining the ancient reverse transcriptase enzyme (RNACopyright DNA copying discovered by Temin in 1959 (see Temin, 1989) and found in 1970 in RNA tumor viruses by Temin and Baltimore), which can produce cDNA from the genome of an RNA virus that infects the cells. It seems that molecular Lamarckism can survive (Lewin, 1993).
脊椎动物系统的可进化性涉及多种机制,这些机制最终会产生协同且非致命的功能变异,达尔文选择可以作用于这些变异。不言而喻,要使脊椎动物发育出一个协调一致的机体,它们首先必须继承正确的多细胞个体发育过程。后生动物的个体发育涉及细胞谱系,这些细胞谱系逐渐放弃自身的增殖能力和全能性,以利于个体的集体利益。为了实现这种细胞利他主义,达尔文动力学摒弃了其最初的单细胞繁殖指令。细胞谱系层面的遗传性与个体层面的遗传性之间的区别至关重要。然而,其影响很少得到深入探讨。虽然全面繁殖是单细胞生物中达尔文式成功的衡量标准,但生物体内细胞谱系的高复制率可能对作为功能单元的个体有害。如果要进化出一个功能协调的单元,就必须进化出一些机制,用以控制那些通过不履行自身体细胞职责来提高自身复制率的变异。关于细胞器起源的问题,见戈德尔和勒布德(1995年)以及霍克斯特拉(1990年)的研究。换句话说,必须进化出控制具有冲突基因的细胞谱系以及偏离其体细胞职责的新突变复制率的冲突调节因子。我们的论点是,(多细胞)个体层面的选择必定与细胞谱系层面的选择相互对立。后生动物胚胎也无法避免这种冲突,特别是随着特化细胞的进化以及其他自我监管调节因子的模式(布莱克斯通和埃里森,1998年;兰西克等人,1996年)。事实上,这两个选择过程之间的冲突允许了一种拉马克式的体细胞到生殖细胞的反馈回路。后生动物个体发育中的这个新元素成为了脊椎动物适应性免疫系统以及我们现在所知的生命的可进化性。我们提出这样一个假说:后生动物的进化通过进化出一种免疫遗传机制解决了这个古老的冲突,这种机制通过保留古老的逆转录酶(1959年由特明发现的RNA复制DNA的过程(见特明,1989年),1970年特明和巴尔的摩在RNA肿瘤病毒中发现)以快速的拉马克式效率做出反应,该逆转录酶可以从感染细胞的RNA病毒基因组中产生cDNA。看来分子拉马克主义能够存续(卢因,1993年)。