Suppr超能文献

具有多尺度集体问题解决智能的自组装控制论材料的进化意义。

Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales.

作者信息

Hartl Benedikt, Risi Sebastian, Levin Michael

机构信息

Allen Discovery Center, Tufts University, Medford, MA 02155, USA.

Institute for Theoretical Physics, Center for Computational Materials Science (CMS), TU Wien, 1040 Wien, Austria.

出版信息

Entropy (Basel). 2024 Jun 21;26(7):532. doi: 10.3390/e26070532.

Abstract

In recent years, the scientific community has increasingly recognized the complex multi-scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the structural and functional plasticity of the layer(s) below. The question of how natural selection could give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects of such decision-making competencies of MCA agential components on the process of evolution itself, using in silico neuroevolution experiments of simulated, minimal developmental biology. We specifically model the process of morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis). Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA can regulate their cell states (simulating stochastic processes and noise during development). This allows us to continuously scale the agents' competency levels from a direct encoding scheme (no competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an evolutionary process proceeds much more rapidly when evolving the functional parameters of an MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well toward system parameter changes and even modified objective functions of the evolutionary process. Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico morphogenesis model strongly affect the evolutionary process, suggesting significant functional implications of the near-ubiquitous competency seen in living matter.

摘要

近年来,科学界越来越认识到生物学复杂的多尺度能力架构(MCA),它由相互嵌套的主动稳态因子层组成,每一层都为上一层形成自我编排的基础,反过来又依赖于下一层的结构和功能可塑性。自然选择如何产生这种MCA一直是深入研究的焦点。在这里,我们转而使用模拟的最小发育生物学的计算机神经进化实验,研究MCA代理组件的这种决策能力对进化过程本身的影响。我们具体用神经细胞自动机(NCA)对形态发生过程进行建模,并利用进化算法优化相应的模型参数,目标是集体自组装出二维空间目标模式(可靠的形态发生)。此外,我们系统地改变NCA单细胞代理调节其细胞状态的准确性(模拟发育过程中的随机过程和噪声)。这使我们能够将代理的能力水平从直接编码方案(无能力)连续扩展到MCA(细胞决策执行具有完美可靠性)。我们证明,与直接进化目标模式相比,进化MCA的功能参数时进化过程进行得更快。此外,进化出的MCA对系统参数变化甚至进化过程的修改目标函数具有良好的泛化能力。因此,我们基于NCA的计算机形态发生模型中代理部分的自适应问题解决能力强烈影响进化过程,这表明在生物中普遍存在的能力具有重要的功能意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa7/11275831/62fb7c94672f/entropy-26-00532-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验