Suppr超能文献

一项针对全国健康残疾调查中出现的非随机缺失分类数据的敏感性分析。

A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey.

作者信息

Baker Stuart G, Ko Chia-Wen, Graubard Barry I

机构信息

Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, EPN 3131, 6130 Executive Blvd MSC 7354, Bethesda, MD 20892-7354, USA.

出版信息

Biostatistics. 2003 Jan;4(1):41-56. doi: 10.1093/biostatistics/4.1.41.

Abstract

Using data from 145,007 adults in the Disability Supplement to the National Health Interview Survey, we investigated the effect of balance difficulties on frequent depression after controlling for age, gender, race, and other baseline health status information. There were two major complications: (i) 80% of subjects were missing data on depression and the missing-data mechanism was likely related to depression, and (ii) the data arose from a complex sample survey. To adjust for (i) we investigated three classes of models: missingness in depression, missingness in depression and balance, and missingness in depression with an auxiliary variable. To adjust for (ii) we developed the first linearization variance formula for nonignorable missing-data models. Our sensitivity analysis was based on fitting a range of ignorable missing-data models along with nonignorable missing-data models that added one or two parameters. All nonignorable missing-data models that we considered fit the data substantially better than their ignorable missing-data counterparts. Under an ignorable missing-data mechanism, the odds ratio for the association between balance and depression was 2.0 with a 95% CI of (1.8, 2.2). Under 29 of the 30 selected nonignorable missing-data models, the odds ratios ranged from 2.7 with 95% CI of (2.3, 3.1) to 4.2 with 95% CI of (3.9, 4.6). Under one nonignorable missing-data model, the odds ratio was 7.4 with 95% CI of (6.3, 8.6). This is the first analysis to find a strong association between balance difficulties and frequent depression.

摘要

利用国家健康访谈调查残疾补充部分中145,007名成年人的数据,我们在控制了年龄、性别、种族和其他基线健康状况信息后,研究了平衡困难对频繁抑郁的影响。存在两个主要问题:(i)80%的受试者缺失抑郁数据,且缺失数据机制可能与抑郁有关;(ii)数据来自复杂的抽样调查。为了应对(i),我们研究了三类模型:抑郁缺失模型、抑郁和平衡缺失模型以及带有辅助变量的抑郁缺失模型。为了应对(ii),我们为不可忽略缺失数据模型开发了首个线性化方差公式。我们的敏感性分析基于拟合一系列可忽略缺失数据模型以及添加了一两个参数的不可忽略缺失数据模型。我们考虑的所有不可忽略缺失数据模型对数据的拟合都明显优于其可忽略缺失数据的对应模型。在可忽略缺失数据机制下,平衡与抑郁之间关联的优势比为2.0,95%置信区间为(1.8,2.2)。在30个选定的不可忽略缺失数据模型中的29个模型下,优势比范围从2.7(95%置信区间为(2.3,3.1))到4.2(95%置信区间为(3.9,4.6))。在一个不可忽略缺失数据模型下,优势比为7.4,95%置信区间为(6.3,8.6)。这是首次发现平衡困难与频繁抑郁之间存在强关联的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验