Suppr超能文献

结合针对多个表型性状的连锁或关联的依赖性检验。

Combining dependent tests for linkage or association across multiple phenotypic traits.

作者信息

Xu Xin, Tian Lu, Wei L J

机构信息

Program for Population Genetics, Harvard School of Public Health, 667 Huntington Ave, Boston, MA 02115, USA.

出版信息

Biostatistics. 2003 Apr;4(2):223-9. doi: 10.1093/biostatistics/4.2.223.

Abstract

A robust statistical method to detect linkage or association between a genetic marker and a set of distinct phenotypic traits is to combine univariate trait-specific test statistics for a more powerful overall test. This procedure does not need complex modeling assumptions, can easily handle the problem with partially missing trait values, and is applicable to the case with a mixture of qualitative and quantitative traits. In this note, we propose a simple test procedure along this line, and show its advantages over the standard combination tests for linkage or association in the literature through a data set from Genetic Analysis Workshop 12 (GAW12) and an extensive simulation study.

摘要

一种用于检测基因标记与一组不同表型性状之间连锁或关联的强大统计方法,是将单变量性状特异性检验统计量组合起来,以进行更强大的总体检验。该方法不需要复杂的建模假设,能够轻松处理部分性状值缺失的问题,并且适用于定性和定量性状混合的情况。在本笔记中,我们提出了一种沿此思路的简单检验方法,并通过遗传分析研讨会12(GAW12)的一个数据集以及广泛的模拟研究,展示了其相对于文献中用于连锁或关联的标准组合检验的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验