Grimme Stefan
Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany.
J Comput Chem. 2003 Oct;24(13):1529-37. doi: 10.1002/jcc.10320.
Based on a partitioning of the total correlation energy into contributions from parallel- and antiparallel-spin pairs of electrons, a modified third-order Møller-Plesset (MP) perturbation theory is developed. The method, termed SCS-MP3 (SCS for spin-component-scaled) continues previous work on an improved version of MP2. A benchmark set of 32 isogyric reaction energies, 11 atomization energies, and 11 stretched geometries is used to assess to performance of the model in comparison to the standard quantum chemical approaches MP2, MP3, and QCISD(T). It is found, that the new method performs significantly better than usual MP2/MP3 and even outperforms the more costly QCISD method. Opposite to the usual MP series, the SCS third-order correction uniformly improves the results. Dramatic enhancements are especially observed for the more difficult atomization energies, some of the stretched geometries, and reaction and ionization energies involving transition metal compounds where the method seems to be competitive or even superior to the widely used density functional approaches. Further tests performed for other complex systems (biradicals, C(20) isomers, transition states) demonstrate that the SCS-MP3 model yields often results of QCISD(T) accuracy. The uniformity with which the new approach improves for very different correlation problems indicates significant robustness, and suggests it as a valuable quantum chemical method of general use.
基于将总相关能划分为电子平行自旋对和反平行自旋对的贡献,发展了一种改进的三阶莫勒-普莱塞特(MP)微扰理论。该方法称为SCS-MP3(SCS代表自旋分量标度),延续了之前关于MP2改进版本的工作。使用一组包含32个等旋反应能、11个原子化能和11个拉伸几何结构的基准数据集,与标准量子化学方法MP2、MP3和QCISD(T)相比,评估该模型的性能。结果发现,新方法的表现明显优于常规的MP2/MP3,甚至超过了成本更高的QCISD方法。与常规的MP系列不同,SCS三阶校正能一致地改善结果。对于更具挑战性的原子化能、一些拉伸几何结构以及涉及过渡金属化合物的反应和电离能,尤其观察到显著的增强,在这些情况下该方法似乎具有竞争力,甚至优于广泛使用的密度泛函方法。对其他复杂体系(双自由基、C(20)异构体、过渡态)进行的进一步测试表明,SCS-MP3模型常常能给出QCISD(T)精度的结果。新方法针对非常不同的相关问题进行改进的一致性表明其具有显著的稳健性,并表明它是一种有价值的通用量子化学方法。