Department of Organic Chemistry, Weizmann Institute of Science, 7610001 Reḩovot, Israel.
J Chem Theory Comput. 2020 Jul 14;16(7):4238-4255. doi: 10.1021/acs.jctc.0c00189. Epub 2020 Jun 5.
The large and chemically diverse GMTKN55 benchmark was used as a training set for parametrizing composite wave function thermochemistry protocols akin to G4(MP2)XK theory (Chan, B.; Karton, A.; Raghavachari, K. . , , 4478-4484). On account of their availability for elements H through Rn, Karlsruhe def2 basis sets were employed. Even after reparametrization, the GMTKN55 WTMAD2 (weighted mean absolute deviation, type 2) for G4(MP2)-XK is actually inferior to that of the best rung-4 DFT functional, ωB97M-V. By increasing the basis set for the MP2 part to def2-QZVPPD, we were able to substantially improve performance at modest cost (if an RI-MP2 approximation is made), with WTMAD2 for this G4(MP2)-XK-D method now comparable to the better rung-5 functionals (albeit at greater cost). A three-tier approach with a scaled MP3/def2-TZVPP intermediate step, however, leads to a G4(MP3)-D method that is markedly superior to even the best double hybrids ωB97M(2) and revDSD-PBEP86-D4. Evaluating the CCSD(T) component with a triple-ζ, rather than split-valence, basis set yields only a modest further improvement that is incommensurate with the drastic increase in computational cost. G4(MP3)-D and G4(MP2)-XK-D have about 40% better WTMAD2, at similar or lower computational cost, than their counterparts G4 and G4(MP2), respectively: detailed comparison reveals that the difference lies in larger molecules due to basis set incompleteness error. An E2/{T,Q} extrapolation and a CCSD(T)/def2-TZVP step provided the G4-T method of high accuracy and with just three fitted parameters. Using KS orbitals in MP2 leads to the G4(MP3|KS)-D method, which entirely eliminates the CCSD(T) step and has no steps costlier than scaled MP3; this shows a path forward to further improvements in double-hybrid density functional methods. None of our final selections require an empirical HLC correction; this cuts the number of empirical parameters in half and avoids discontinuities on potential energy surfaces. G4-T-DLPNO, a variant in which post-MP2 corrections are evaluated at the DLPNO-CCSD(T) level, achieves nearly the accuracy of G4-T but is applicable to much larger systems.
大量且化学结构多样的 GMTKN55 基准被用作参数化复合波函数热化学协议的训练集,类似于 G4(MP2)XK 理论(Chan, B.; Karton, A.; Raghavachari, K.,,, 4478-4484)。由于它们适用于 H 到 Rn 元素,因此使用了 Karlsruhe def2 基组。即使经过重新参数化,G4(MP2)-XK 的 GMTKN55 WTMAD2(加权平均绝对偏差,类型 2)实际上也不如最佳 rung-4 DFT 函数 ωB97M-V。通过将 MP2 部分的基组增加到 def2-QZVPPD,我们能够以适度的成本大幅提高性能(如果采用 RI-MP2 近似),这种 G4(MP2)-XK-D 方法的 WTMAD2 现在可与更好的 rung-5 函数相媲美(尽管成本更高)。然而,采用缩放 MP3/def2-TZVPP 中间步骤的三层方法会导致 G4(MP3)-D 方法明显优于甚至是最好的双杂交 ωB97M(2)和 revDSD-PBEP86-D4。用三 ζ而不是分裂价基组评估 CCSD(T)分量仅会导致适度的进一步改进,与计算成本的急剧增加不成比例。G4(MP3)-D 和 G4(MP2)-XK-D 的 WTMAD2 分别比其对应物 G4 和 G4(MP2)好约 40%,计算成本相似或更低:详细比较表明,由于基组不完整性误差,差异在于较大的分子。E2/{T,Q}外推和 CCSD(T)/def2-TZVP 步骤为具有三个拟合参数的高精度 G4-T 方法提供了支持。在 MP2 中使用 KS 轨道导致 G4(MP3|KS)-D 方法完全消除了 CCSD(T)步骤,并且没有比缩放 MP3 更昂贵的步骤;这为进一步改进双杂交密度泛函方法指明了道路。我们的最终选择都不需要经验性 HLC 校正;这将经验参数的数量减半,并避免了势能表面上的不连续性。G4-T-DLPNO 是一种变体,其中 MP2 后校正在 DLPNO-CCSD(T)水平上进行评估,几乎可以达到 G4-T 的精度,但适用于更大的系统。