Grimme Stefan
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany.
J Phys Chem A. 2005 Apr 7;109(13):3067-77. doi: 10.1021/jp050036j.
Three MP2-type electron correlation treatments and standard density functional theory (DFT) approaches are used to predict the heats of formation for a wide variety of different molecules. The SCF and MP2 calculations are performed efficiently using the resolution-of-the-identity (RI) approximation such that large basis set (i.e., polarized valence quadruple-zeta quality) treatments become routinely possible for systems with 50-100 atoms. An atom equivalent scheme that corrects the calculated atomic energies is applied to extract the "real" accuracy of the methods for chemically relevant problems. It is found that the spin-component-scaled MP2 method (SCS-MP2, J. Chem. Phys, 2003, 118, 9095) performs best and provides chemical accuracy (MAD of 1.18 kcal/mol) for a G2/97 test set of molecules. The computationally more economical SOS-MP2 variant, which retains only the opposite-spin part of the correlation energy, is slightly less accurate (MAD of 1.36 kcal/mol) than SCS-MP2. Both spin-component-scaled MP2 treatments perform significantly better than standard MP2 (MAD of 1.77 kcal/mol) and DFT-B3LYP (MAD of 2.12 kcal/mol). These conclusions are supported by results obtained for a second test set of complex systems containing 70 molecules, including charged, strained, polyhalogenated, hypervalent, and large unsaturated species (e.g. C60). For this set, DFT-B3LYP performs badly (MAD of 8.6 kcal/mol) with many errors >10-20 kcal/mol while the spin-component-scaled MP2 methods are still very accurate (MAD of 2.8 and 3.7 kcal/mol, respectively). DFT-B3LYP shows an obvious tendency to underestimate molecular stability as the system size increases. Out of six density functionals tested, the hybrid functional PBE0 performs best. All in all, the SCS-MP2 method, together with large AO basis sets, clearly outperforms current DFT approaches and seems to be the most accurate quantum chemical model that routinely can predict the thermodynamic properties of large main group compounds.
三种MP2型电子相关处理方法和标准密度泛函理论(DFT)方法被用于预测各种不同分子的生成热。使用单位分解(RI)近似有效地进行了自洽场(SCF)和MP2计算,使得对于含有50 - 100个原子的体系,常规地进行大基组(即极化价四重zeta质量)处理成为可能。应用一种校正计算出的原子能量的原子等效方案,以提取这些方法对于化学相关问题的“实际”准确度。结果发现,自旋分量标度的MP2方法(SCS - MP2,《化学物理杂志》,2003年,118卷,9095页)表现最佳,对于一组G2/97测试分子提供了化学准确度(平均绝对偏差为1.18千卡/摩尔)。计算上更经济的SOS - MP2变体,它只保留相关能的相反自旋部分,其准确度略低于SCS - MP2(平均绝对偏差为I.36千卡/摩尔)。两种自旋分量标度的MP2处理方法都比标准MP2(平均绝对偏差为1.77千卡/摩尔)和DFT - B3LYP(平均绝对偏差为2.12千卡/摩尔)表现得明显更好。这些结论得到了包含70个分子的第二组复杂体系测试结果的支持,这些分子包括带电的、有张力的、多卤代的、高价的和大的不饱和物种(如C60)。对于这一组,DFT - B3LYP表现很差(平均绝对偏差为8.6千卡/摩尔),许多误差>10 - 20千卡/摩尔,而自旋分量标度的MP2方法仍然非常准确(平均绝对偏差分别为2.8和3.7千卡/摩尔)。随着体系尺寸增加,DFT - B3LYP显示出明显低估分子稳定性的趋势。在所测试的六种密度泛函中,杂化泛函PBE0表现最佳。总而言之,SCS - MP2方法连同大的原子轨道基组,明显优于当前的DFT方法,似乎是常规地能够预测大型主族化合物热力学性质的最准确的量子化学模型。