Brown Elizabeth R, Ibrahim Joseph G
Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA.
Biometrics. 2003 Jun;59(2):221-8. doi: 10.1111/1541-0420.00028.
This article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates. This type of approach is becoming increasingly essential in many applications, such as HIV and cancer vaccine trials, where patients' responses are highly diverse and may not be easily modeled with known distributions. An example will be presented from a clinical trial of a cancer vaccine where the survival outcome is time to recurrence of a tumor. Immunologic measures believed to be predictive of tumor recurrence were taken repeatedly during follow-up. We will present an analysis of this data using our new semiparametric Bayesian hierarchical joint modeling methodology to determine the association of these longitudinal immunologic measures with time to tumor recurrence.
本文提出了一种用于纵向数据和生存数据联合建模的新的半参数贝叶斯分层模型。我们使用定义纵向模型的参数上的狄利克雷过程先验来放宽纵向模型的分布假设。纵向参数的后验分布不受参数约束,从而得到更稳健的估计。这种方法在许多应用中变得越来越重要,例如艾滋病毒和癌症疫苗试验,在这些试验中患者的反应高度多样,可能不容易用已知分布进行建模。将给出一个来自癌症疫苗临床试验的例子,其中生存结果是肿瘤复发的时间。在随访期间反复进行被认为可预测肿瘤复发的免疫指标检测。我们将使用新的半参数贝叶斯分层联合建模方法对这些数据进行分析,以确定这些纵向免疫指标与肿瘤复发时间之间的关联。