Scarpa Bruno, Dunson David B
Department of Statistical Sciences, University of Padua, 241 Padua, Italy.
Biometrics. 2009 Sep;65(3):772-80. doi: 10.1111/j.1541-0420.2008.01163.x. Epub 2009 Jan 23.
A variety of flexible approaches have been proposed for functional data analysis, allowing both the mean curve and the distribution about the mean to be unknown. Such methods are most useful when there is limited prior information. Motivated by applications to modeling of temperature curves in the menstrual cycle, this article proposes a flexible approach for incorporating prior information in semiparametric Bayesian analyses of hierarchical functional data. The proposed approach is based on specifying the distribution of functions as a mixture of a parametric hierarchical model and a nonparametric contamination. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. In the motivating application, the contamination component allows unanticipated curve shapes in unhealthy menstrual cycles. Methods are developed for posterior computation, and the approach is applied to data from a European fecundability study.
针对功能数据分析,人们提出了多种灵活的方法,这些方法允许均值曲线和均值周围的分布均为未知。当先验信息有限时,此类方法最为有用。受月经周期温度曲线建模应用的启发,本文提出了一种灵活的方法,用于在分层功能数据的半参数贝叶斯分析中纳入先验信息。所提出的方法基于将函数的分布指定为参数分层模型和非参数污染的混合。参数成分是根据先验知识选择的,而污染则被表征为功能狄利克雷过程。在实际应用中,污染成分允许不健康月经周期中出现意外的曲线形状。开发了用于后验计算的方法,并将该方法应用于一项欧洲生育能力研究的数据。