Suppr超能文献

使用稳健分布对纵向测量数据和事件发生时间数据进行贝叶斯联合建模。

Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions.

作者信息

Baghfalaki T, Ganjali M, Hashemi R

机构信息

a Department of Statistics , Shahid Beheshti University , Tehran , Iran.

出版信息

J Biopharm Stat. 2014;24(4):834-55. doi: 10.1080/10543406.2014.903657.

Abstract

Distributional assumptions of most of the existing methods for joint modeling of longitudinal measurements and time-to-event data cannot allow incorporation of outlier robustness. In this article, we develop and implement a joint modeling of longitudinal and time-to-event data using some powerful distributions for robust analyzing that are known as normal/independent distributions. These distributions include univariate and multivariate versions of the Student's t, the slash, and the contaminated normal distributions. The proposed model implements a linear mixed effects model under a normal/independent distribution assumption for both random effects and residuals of the longitudinal process. For the time-to-event process a parametric proportional hazard model with a Weibull baseline hazard is used. Also, a Bayesian approach using the Markov-chain Monte Carlo method is adopted for parameter estimation. Some simulation studies are performed to investigate the performance of the proposed method under presence and absence of outliers. Also, the proposed methods are applied for analyzing a real AIDS clinical trial, with the aim of comparing the efficiency and safety of two antiretroviral drugs, where CD4 count measurements are gathered as longitudinal outcomes. In these data, time to death or dropout is considered as the interesting time-to-event outcome variable. Different model structures are developed for analyzing these data sets, where model selection is performed by the deviance information criterion (DIC), expected Akaike information criterion (EAIC), and expected Bayesian information criterion (EBIC).

摘要

大多数现有纵向测量与事件发生时间数据联合建模方法的分布假设无法考虑异常值稳健性。在本文中,我们开发并实施了一种纵向和事件发生时间数据的联合建模方法,使用一些强大的分布进行稳健分析,即正态/独立分布。这些分布包括单变量和多变量版本的学生t分布、斜线分布和污染正态分布。所提出的模型在正态/独立分布假设下,对纵向过程的随机效应和残差实施线性混合效应模型。对于事件发生时间过程,使用具有威布尔基线风险的参数比例风险模型。此外,采用基于马尔可夫链蒙特卡罗方法的贝叶斯方法进行参数估计。进行了一些模拟研究,以调查所提出方法在存在和不存在异常值情况下的性能。此外,所提出的方法被应用于分析一项真实的艾滋病临床试验,目的是比较两种抗逆转录病毒药物的有效性和安全性,其中将CD4细胞计数测量作为纵向结果收集。在这些数据中,将死亡或退出的时间视为感兴趣的事件发生时间结果变量。开发了不同的模型结构来分析这些数据集,其中通过偏差信息准则(DIC)、期望赤池信息准则(EAIC)和期望贝叶斯信息准则(EBIC)进行模型选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验