Suppr超能文献

马尔可夫化学物质“虚拟”设计中的对称性考量(MARCH-INSIDE)I:中心手性编码、ACE抑制剂分类及σ-受体拮抗剂活性预测

Symmetry considerations in Markovian chemicals 'in silico' design (MARCH-INSIDE) I: central chirality codification, classification of ACE inhibitors and prediction of sigma-receptor antagonist activities.

作者信息

Díaz Humberto González, Sánchez Ivan Hernández, Uriarte Eugenio, Santana Lourdes

机构信息

Chemical Bio-actives Center, Central University of 'Las Villas' 54830, Santa Clara, Cuba.

出版信息

Comput Biol Chem. 2003 Jul;27(3):217-27. doi: 10.1016/s0097-8485(02)00053-0.

Abstract

The MARCH-INSIDE methodology has been generalized, by means of an exponential central symmetry factor, to codify chemical structure information for chiral drugs. In order to test the potential of this novel approach in drug design we have modeled the angiotensin-converting enzyme inhibitory activity of perindoprilate's sigma-stereoisomer combinatorial library. A linear discriminant analysis (LDA) model classifies correctly 83.33% of active compounds and 94.12% of non-active ones in a training set, results that represent a total of 91.3% accuracy in classification. On the other hand, the model classifies 83.33% of these compounds in the predicting series. Only three isomers (those with higher activity) were used in the predicting set and the model classified all three very well. Similar predictive behavior was observed in a leave-1-out cross validation experiment. Canonical regression analysis corroborated the statistical quality of the models (Rcanc=0.79, with a P-level<0.000) and was also used to compute biological activity canonical scores for each compound. Finally, prediction of the biological activities of chiral 3-(3-hydroxyphenyl)piperidines, which are sigma-receptor antagonists, by linear regression analysis was carried out. The model was statistically significant (R=0.963, S=0.29, P<0.00) and can be considered as a preliminary comparative study between MARCH-INSIDE and Chiral Topologic descriptors. Application of the Student test permits the detection of non-symmetric properties within the data set and justified the requirement of non-symmetric (for pairs of enantiomers) molecular descriptors. The MARCH-INSIDE model showed very good stability to data variation in the leave-1-out cross validation experiment (Scv=0.32).

摘要

通过指数中心对称因子,MARCH-INSIDE方法已得到推广,用于编码手性药物的化学结构信息。为了测试这种新方法在药物设计中的潜力,我们对培哚普利拉的σ-立体异构体组合库的血管紧张素转换酶抑制活性进行了建模。线性判别分析(LDA)模型在训练集中正确分类了83.33%的活性化合物和94.12%的非活性化合物,这些结果代表了91.3%的总分类准确率。另一方面,该模型在预测系列中对83.33%的这些化合物进行了分类。预测集中仅使用了三种异构体(活性较高的那些),并且模型对这三种异构体都分类得很好。在留一法交叉验证实验中观察到了类似的预测行为。典型回归分析证实了模型的统计质量(Rcanc = 0.79,P值<0.000),并且还用于计算每种化合物的生物活性典型分数。最后,通过线性回归分析对手性3-(3-羟基苯基)哌啶(即σ-受体拮抗剂)的生物活性进行了预测。该模型具有统计学意义(R = 0.963,S = 0.29,P<0.00),可被视为MARCH-INSIDE与手性拓扑描述符之间的初步比较研究。学生检验的应用允许检测数据集中的非对称性质,并证明了对非对称(对于对映体对)分子描述符的要求是合理的。在留一法交叉验证实验中,MARCH-INSIDE模型对数据变化显示出非常好的稳定性(Scv = 0.32)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验