Gonzáles-Díaz Humberto, Gia Ornella, Uriarte Eugenio, Hernádez Ivan, Ramos Ronal, Chaviano Mayrelis, Seijo Santiago, Castillo Juan A, Morales Lázaro, Santana Lourdes, Akpaloo Delali, Molina Enrique, Cruz Maikel, Torres Luis A, Cabrera Miguel A
Chemical Bioactives Center, Central University of Las Villas, 54830 Santa Clara, Villa Clara, Cuba.
J Mol Model. 2003 Dec;9(6):395-407. doi: 10.1007/s00894-003-0148-7. Epub 2003 Sep 16.
A simple stochastic approach, designed to model the movement of electrons throughout chemical bonds, is introduced. This model makes use of a Markov matrix to codify useful structural information in QSAR. The self-return probabilities of this matrix throughout time ((SR)pi(k)) are then used as molecular descriptors. Firstly, a calculation of (SR)pi(k) is made for a large series of anticancer and non-anticancer chemicals. Then, k-Means Cluster Analysis allows us to split the data series into clusters and ensure a representative design of training and predicting series. Next, we develop a classification function through Linear Discriminant Analysis (LDA). This QSAR discriminates between anticancer compounds and non-active compounds with a correct global classification of 90.5% in the training series. The model also correctly classified 86.07% of the compounds in the predicting series. This classification function is then used to perform a virtual screening of a combinatorial library of coumarins. In this connection, the biological assay of some furocoumarins, selected by virtual screening using the present model, gives good results. In particular, a tetracyclic derivative of 5-methoxypsoralen (5-MOP) has an IC50 against HL-60 tumoral line around 6 to 10 times lower than those for 8-MOP and 5-MOP (reference drugs), respectively. Finally, application of Iso-contribution Zone Analysis (IZA) provides structural interpretation of the biological activity predicted with this QSAR.
介绍了一种简单的随机方法,旨在模拟电子在化学键中的移动。该模型利用马尔可夫矩阵对定量构效关系(QSAR)中的有用结构信息进行编码。然后,将该矩阵随时间的自返回概率((SR)pi(k))用作分子描述符。首先,对大量抗癌和非抗癌化学物质计算(SR)pi(k)。然后,k均值聚类分析使我们能够将数据系列划分为簇,并确保训练和预测系列的代表性设计。接下来,我们通过线性判别分析(LDA)开发分类函数。该QSAR在训练系列中对抗癌化合物和非活性化合物进行区分,总体正确分类率为90.5%。该模型在预测系列中也正确分类了86.07%的化合物。然后,使用该分类函数对香豆素组合库进行虚拟筛选。在此方面,使用本模型通过虚拟筛选选择的一些呋喃香豆素的生物学测定取得了良好结果。特别是,5-甲氧基补骨脂素(5-MOP)的四环衍生物对HL-60肿瘤细胞系的IC50分别比8-MOP和5-MOP(参考药物)低约6至10倍。最后,应用等贡献区分析(IZA)对该QSAR预测的生物活性进行结构解释。