Suppr超能文献

Heterodimer formation is essential for heparanase enzymatic activity.

作者信息

Levy-Adam Flonia, Miao Hua-Quan, Heinrikson Robert L, Vlodavsky Israel, Ilan Neta

机构信息

Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.

出版信息

Biochem Biophys Res Commun. 2003 Sep 5;308(4):885-91. doi: 10.1016/s0006-291x(03)01478-5.

Abstract

Heparanase is an endo-beta-D-glucuronidase involved in cleavage of heparan sulfate residues and hence participates in extracellular matrix degradation and remodeling. The heparanase cDNA encodes for a polypeptide of 543 amino acids that appears as a approximately 65 kDa band in SDS-PAGE analysis. The protein undergoes a proteolytic cleavage that is likely to occur at two potential cleavage sites, Glu(109)-Ser(110) and Gln(157)-Lys(158), yielding an 8 kDa polypeptide at the N-terminus, a 50 kDa polypeptide at the C-terminus, and a 6 kDa linker polypeptide that resides in-between. The active form of heparanase has long been thought to be a 50 kDa polypeptide isolated from cells and tissues. However, attempts to obtain heparanase activity after expression of the 50 kDa polypeptide failed, suggesting that the N-terminal region is important for heparanase enzymatic activity. It has been hypothesized that heterodimer formation between the 8 and 50 kDa heparanase subunits is important for heparanase enzymatic activity. By individually or co-expressing the 8 and 50 kDa heparanase subunits in mammalian cells, we demonstrate specific association between the heparanase subunits by means of co-immunoprecipitation and pull-down experiments. Moreover, a region in the 50 kDa heparanase subunit that mediates interaction with the 8 kDa subunit was identified. Altogether, our results clearly indicate that heterodimer formation is necessary and sufficient for heparanase enzymatic activity in mammalian cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验