Suppr超能文献

迈向个性化医疗的综合临床基因组模型:在乳腺癌预后预测中结合基因表达特征与临床因素

Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction.

作者信息

Nevins Joseph R, Huang Erich S, Dressman Holly, Pittman Jennifer, Huang Andrew T, West Mike

机构信息

Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Hum Mol Genet. 2003 Oct 15;12 Spec No 2:R153-7. doi: 10.1093/hmg/ddg287. Epub 2003 Aug 19.

Abstract

Genomic data, particularly genome-scale measures of gene expression derived from DNA microarray studies, has the potential for adding enormous information to the analysis of biological phenotypes. Perhaps the most successful application of this data has been in the characterization of human cancers, including the ability to predict clinical outcomes. Nevertheless, most analyses have used gene expression profiles to define broad group distinctions, similar to the use of traditional clinical risk factors. As a result, there remains considerable heterogeneity within the broadly defined groups and thus predictions fall short of providing accurate predictions for individual patients. One strategy to resolve this heterogeneity is to make use of multiple gene expression patterns that are more powerful in defining individual characteristics and predicting outcomes than any single gene expression pattern. Statistical tree-based classification systems provide a framework for assessing multiple patterns, that we term metagenes, selecting those that are most capable of resolving the biological heterogeneity. Moreover, this framework provides a mechanism to combine multiple forms of data, both genomic and clinical, to most effectively characterize individual patients and achieve the goal of personalized predictions of clinical outcomes.

摘要

基因组数据,尤其是源自DNA微阵列研究的基因表达的基因组规模测量,有潜力为生物表型分析增添大量信息。或许该数据最成功的应用在于人类癌症的特征描述,包括预测临床结果的能力。然而,大多数分析使用基因表达谱来定义宽泛的组间差异,类似于使用传统临床风险因素。结果,在宽泛定义的组内仍存在相当大的异质性,因此预测无法为个体患者提供准确预测。解决这种异质性的一种策略是利用多种基因表达模式,这些模式在定义个体特征和预测结果方面比任何单一基因表达模式更强大。基于统计树的分类系统提供了一个评估多种模式(我们称之为元基因)的框架,选择那些最能解决生物异质性的模式。此外,该框架提供了一种机制,可将基因组和临床等多种形式的数据结合起来,以最有效地描述个体患者并实现临床结果个性化预测的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验