Suppr超能文献

用于高斯图形模型狄利克雷过程混合的基于GPU的霰弹枪随机搜索

GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

作者信息

Mukherjee Chiranjit, Rodriguez Abel

机构信息

Netflix, Los Gatos, CA (

Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (

出版信息

J Comput Graph Stat. 2016;25(3):762-788. doi: 10.1080/10618600.2015.1037883. Epub 2016 Aug 5.

Abstract

Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

摘要

高斯图形模型在对具有稀疏条件依赖关系的高维多元数据进行建模时很受欢迎。高斯图形模型的混合将该模型扩展到更现实的场景,即观测值来自由少量同质子群体组成的异质总体。在本文中,我们提出了一种新颖的随机搜索算法,用于寻找可分解高斯图形模型的高维狄利克雷过程混合的后验模式。此外,我们研究了如何利用图形处理单元的大规模线程并行化能力来加速计算。我们通过各种模拟数据示例展示了我们算法的计算优势,在中等维度数据示例中,我们将我们的随机搜索与马尔可夫链蒙特卡罗算法进行了比较。这些实验表明,我们的随机搜索在计算时间和发现的后验模式质量方面都大大优于马尔可夫链蒙特卡罗算法。最后,我们分析了一个基因表达数据集,在该数据集中马尔可夫链蒙特卡罗算法太慢而无法实际应用。

相似文献

2
Sparse covariance estimation in heterogeneous samples.异质样本中的稀疏协方差估计
Electron J Stat. 2011;5:981-1014. doi: 10.1214/11-EJS634. Epub 2011 Sep 15.
6
Bayesian phylogeny analysis via stochastic approximation Monte Carlo.通过随机近似蒙特卡罗法进行贝叶斯系统发育分析。
Mol Phylogenet Evol. 2009 Nov;53(2):394-403. doi: 10.1016/j.ympev.2009.06.019. Epub 2009 Jul 7.
9
An Expectation Conditional Maximization approach for Gaussian graphical models.高斯图形模型的期望条件最大化方法。
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.

引用本文的文献

1
Bayesian graphical models for computational network biology.贝叶斯计算网络生物学图形模型。
BMC Bioinformatics. 2018 Mar 21;19(Suppl 3):63. doi: 10.1186/s12859-018-2063-z.

本文引用的文献

1
Sparse covariance estimation in heterogeneous samples.异质样本中的稀疏协方差估计
Electron J Stat. 2011;5:981-1014. doi: 10.1214/11-EJS634. Epub 2011 Sep 15.
3
Comprehensive molecular portraits of human breast tumours.人类乳腺肿瘤的全面分子特征图谱。
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.
4
Bayesian sparsity-path-analysis of genetic association signal using generalized t priors.使用广义t先验对遗传关联信号进行贝叶斯稀疏路径分析。
Stat Appl Genet Mol Biol. 2012 Jan 6;11(2):/j/sagmb.2012.11.issue-2/1544-6115.1712/1544-6115.1712.xml. doi: 10.2202/1544-6115.1712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验