Calabi Luisella, Paleari Lino, Biondi Luca, Linati Laura, De Miranda Mario, Ghelli Stefano
Centro Ricerche Milano, Bracco Imaging S.p.A., via E. Folli, 50-20134 Milan, Italy.
J Magn Reson. 2003 Sep;164(1):28-34. doi: 10.1016/s1090-7807(03)00203-9.
The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration (GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.
通过测量相应镝配合物(DC)对水质子和游离钠离子的魔角旋转核磁共振(MAS-NMR)共振产生的镧系元素诱导位移(LIS),评估了BOPTA、DTPA、DOTA、EDTP、HPDO3A和DOTP的钆(III)配合物在人红细胞(HRBC)中的摄取情况。这些配合物作为诊断用磁共振成像造影剂(MRI-CA)具有重要用途。在9.395T下采集的HRBC悬浮液的1H和23Na MAS-NMR谱图显示,由于细胞外和细胞内的水(或钠),仅出现一个信号。在MAS谱图中,细胞隔室中DC的存在仅会使该细胞隔室中的原子核(水质子或钠)产生LIS,并且该LIS可以与生理溶液中收集的DC浓度(通过LIS与DC浓度的实验曲线)相关。为了获得关于LIS的正确结果,必须使用MAS技术,因为它保证只有存在镧系配合物(LC)的同一细胞隔室中的原子核才会显示LIS。在所有考虑的情况下,向HRBC(血细胞比容为100%)中添加DC只会使细胞外水(或钠)信号发生位移,并且当通过钠信号计算时,细胞外和细胞内隔室之间的浓度梯度(GC)大于100:1。这些高GC值直接证明所测试的镝配合物均未穿过HRBC膜。由于DC与钆配合物具有同构性,相应的钆配合物(MRI-CA)也不会穿过HRBC膜,因此,它们不会被HRBC摄取。通过水质子信号计算得到的GC值远低于通过钠信号获得的值。这证明为了以最佳方式使用该方法,同位素的选择是关键步骤。实际上,GC值取决于最低可检测的LIS,而LIS又取决于镧系配合物(LC)的性质和所观察的同位素。