Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, France.
Chemistry. 2012 Jan 27;18(5):1408-18. doi: 10.1002/chem.201101779. Epub 2011 Dec 28.
Enzyme-responsive MRI-contrast agents containing a "self-immolative" benzylcarbamate moiety that links the MRI-reporter lanthanide complex to a specific enzyme substrate have been developed. The enzymatic cleavage initiates an electronic cascade reaction that leads to a structural change in the Ln(III) complex, with a concomitant response in its MRI-contrast-enhancing properties. We synthesized and investigated a series of Gd(3+) and Yb(3+) complexes, including those bearing a self-immolative arm and a sugar unit as selective substrates for β-galactosidase; we synthesized complex LnL(1), its NH(2) amine derivatives formed after enzymatic cleavage, LnL(2), and two model compounds, LnL(3) and LnL(4). All of the Gd(3+) complexes synthesized have a single inner-sphere water molecule. The relaxivity change upon enzymatic cleavage is limited (3.68 vs. 3.15 mM(-1) s(-1) for complexes GdL(1) and GdL(2), respectively; 37 °C, 60 MHz), which prevents application of this system as an enzyme-responsive T(1) relaxation agent. Variable-temperature (17)O NMR spectroscopy and (1)H NMRD (nuclear magnetic relaxation dispersion) analysis were used to assess the parameters that determine proton relaxivity for the Gd(3+) complexes, including the water-exchange rate (k(ex)(298), varies in the range 1.5-3.9×10(6) s(-1)). Following the enzymatic reaction, the chelates contain an exocyclic amine that is not protonated at physiological pH, as deduced from pH-potentiometric measurements (log K(H)=5.12(±0.01) and 5.99(±0.01) for GdL(2) and GdL(3), respectively). The Yb(3+) analogues show a PARACEST effect after enzymatic cleavage that can be exploited for the specific detection of enzymatic activity. The proton-exchange rates were determined at various pH values for the amine derivatives by using the dependency of the CEST effect on concentration, saturation time, and saturation power. A concentration-independent analysis of the saturation-power-dependency data was also applied. All these different methods showed that the exchange rate of the amine protons of the Yb(III) complexes decreases with increasing pH value (for YbL(3), k(ex)=1300 s(-1) at pH 8.4 vs. 6000 s(-1) at pH 6.4), thereby resulting in a diminution of the observed CEST effect.
已经开发出了含有“自毁”苄基碳酸酯部分的酶响应 MRI 对比剂,该部分将 MRI 报告镧系元素配合物与特定的酶底物连接起来。酶切引发电子级联反应,导致 Ln(III)配合物的结构发生变化,同时其 MRI 对比增强特性也随之发生变化。我们合成并研究了一系列 Gd(3+)和 Yb(3+)配合物,包括那些带有自毁臂和糖单元作为β-半乳糖苷酶的选择性底物的配合物;我们合成了配合物 LnL(1),其在酶切后形成的 NH2 胺衍生物 LnL(2),以及两个模型化合物 LnL(3)和 LnL(4)。所有合成的 Gd(3+)配合物都含有单个内球水分子。酶切后的弛豫率变化有限(分别为 3.68 与 3.15 mM-1 s-1,对于配合物 GdL(1)和 GdL(2);37°C,60 MHz),这限制了该系统作为酶响应 T1 弛豫剂的应用。变温(17)O NMR 光谱和(1)H NMRD(核磁共振弛豫分散)分析用于评估决定 Gd(3+)配合物质子弛豫率的参数,包括水交换率(k(ex)(298),范围为 1.5-3.9×10(6) s-1)。在酶反应之后,螯合物包含一个在生理 pH 下未质子化的外环胺,这可以从 pH 电位测定中推断出来(对于 GdL(2)和 GdL(3),分别为 log K(H)=5.12(±0.01) 和 5.99(±0.01))。在酶切后,Yb(3+)类似物显示出 PARACEST 效应,可用于特异性检测酶活性。通过使用 CEST 效应对浓度、饱和时间和饱和功率的依赖性,在不同 pH 值下确定了胺衍生物的质子交换速率。还应用了对饱和功率依赖性数据的浓度独立分析。所有这些不同的方法都表明,Yb(III)配合物的胺质子交换速率随 pH 值的增加而降低(对于 YbL(3),在 pH 8.4 时 k(ex)=1300 s-1,在 pH 6.4 时 k(ex)=6000 s-1),从而导致观察到的 CEST 效应减弱。