Muthén Bengt, Brown C Hendricks, Masyn Katherine, Jo Booil, Khoo Siek-Toon, Yang Chih-Chien, Wang Chen-Pin, Kellam Sheppard G, Carlin John B, Liao Jason
Graduate School of Education & Information Studies, University of California, Moore Hall, Box 951521, Los Angeles, CA 90095-1521, USA.
Biostatistics. 2002 Dec;3(4):459-75. doi: 10.1093/biostatistics/3.4.459.
This paper proposes growth mixture modeling to assess intervention effects in longitudinal randomized trials. Growth mixture modeling represents unobserved heterogeneity among the subjects using a finite-mixture random effects model. The methodology allows one to examine the impact of an intervention on subgroups characterized by different types of growth trajectories. Such modeling is informative when examining effects on populations that contain individuals who have normative growth as well as non-normative growth. The analysis identifies subgroup membership and allows theory-based modeling of intervention effects in the different subgroups. An example is presented concerning a randomized intervention in Baltimore public schools aimed at reducing aggressive classroom behavior, where only students who were initially more aggressive showed benefits from the intervention.
本文提出了生长混合模型,以评估纵向随机试验中的干预效果。生长混合模型使用有限混合随机效应模型来表示受试者之间未观察到的异质性。该方法允许人们研究干预对以不同类型生长轨迹为特征的亚组的影响。在研究对包含有正常生长和非正常生长个体的人群的影响时,这种建模很有意义。该分析确定了亚组成员身份,并允许对不同亚组中的干预效果进行基于理论的建模。文中给出了一个关于巴尔的摩公立学校旨在减少课堂攻击性行为的随机干预的例子,在该例子中,只有最初攻击性更强的学生从干预中受益。