Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.
Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
Stat Med. 2023 Aug 15;42(18):3302-3315. doi: 10.1002/sim.9806. Epub 2023 May 26.
Researchers in biology and medicine have increasingly focused on characterizing circadian rhythms and their potential impact on disease. Understanding circadian variation in metabolomics, the study of chemical processes involving metabolites may provide insight into important aspects of biological mechanism. Of scientific importance is developing a statistical rigorous approach for characterizing different types of 24-hour patterns among high dimensional longitudinal metabolites. We develop a latent class approach to incorporate variation in 24-hour patterns across metabolites where profiles are modeled with finite mixtures of distinct shape-invariant circadian curves that themselves incorporate variation in amplitude and phase across metabolites. An efficient Markov chain Monte Carlo sampling is used to carry out Bayesian posterior computation. When the model was fit separately by individual to the data from a small group of participants, two distinct 24-hour rhythms were identified, with one being sinusoidal and the other being more complex with multiple peaks. Interestingly, the latent pattern associated with circadian variation (simple sinusoidal curve) had a similar phase across the three participants, while the more complex latent pattern reflecting diurnal variation differed across individual. The results suggested that this modeling framework can be used to separate 24-hour rhythms into an endogenous circadian and one or more exogenous diurnal patterns in describing human metabolism.
生物学和医学领域的研究人员越来越关注描述昼夜节律及其对疾病的潜在影响。了解代谢组学中的昼夜变化,即研究涉及代谢物的化学过程,可能有助于深入了解生物学机制的重要方面。具有科学重要性的是开发一种统计严格的方法来描述高维纵向代谢物中不同类型的 24 小时模式。我们开发了一种潜在类别方法,将代谢物中 24 小时模式的变化纳入其中,其中轮廓采用不同形状不变的昼夜曲线的有限混合来建模,这些曲线本身包含了代谢物中振幅和相位的变化。使用有效的马尔可夫链蒙特卡罗抽样来进行贝叶斯后验计算。当该模型分别根据一小部分参与者的数据进行拟合时,确定了两种不同的 24 小时节律,一种是正弦曲线,另一种则更为复杂,有多个峰值。有趣的是,与昼夜变化相关的潜在模式(简单正弦曲线)在三个参与者中具有相似的相位,而反映日变化的更为复杂的潜在模式则在个体之间有所不同。结果表明,该建模框架可用于将 24 小时节律分为内源性昼夜节律和一个或多个描述人类代谢的外源性日节律。