Suppr超能文献

一种用于具有灵活随机效应分布的广义线性混合模型的蒙特卡罗期望最大化算法。

A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution.

作者信息

Chen Junliang, Zhang Daowen, Davidian Marie

机构信息

Department of Statistics, Box 8203, North Carolina State University, Raleigh, NC 27695-8203, USA.

出版信息

Biostatistics. 2002 Sep;3(3):347-60. doi: 10.1093/biostatistics/3.3.347.

Abstract

A popular way to represent clustered binary, count, or other data is via the generalized linear mixed model framework, which accommodates correlation through incorporation of random effects. A standard assumption is that the random effects follow a parametric family such as the normal distribution; however, this may be unrealistic or too restrictive to represent the data. We relax this assumption and require only that the distribution of random effects belong to a class of 'smooth' densities and approximate the density by the seminonparametric (SNP) approach of Gallant and Nychka (1987). This representation allows the density to be skewed, multi-modal, fat- or thin-tailed relative to the normal and includes the normal as a special case. Because an efficient algorithm to sample from an SNP density is available, we propose a Monte Carlo EM algorithm using a rejection sampling scheme to estimate the fixed parameters of the linear predictor, variance components and the SNP density. The approach is illustrated by application to a data set and via simulation.

摘要

一种表示聚类二元、计数或其他数据的常用方法是通过广义线性混合模型框架,该框架通过纳入随机效应来处理相关性。一个标准假设是随机效应遵循参数族,如正态分布;然而,这可能不现实或限制过强而无法表示数据。我们放宽这一假设,仅要求随机效应的分布属于一类“平滑”密度,并通过加兰特和尼奇卡(1987)的半参数(SNP)方法来近似密度。这种表示允许密度相对于正态分布有偏态、多峰、厚尾或薄尾,并且将正态分布作为特殊情况包含在内。由于有从SNP密度中采样的有效算法,我们提出一种使用拒绝采样方案的蒙特卡罗期望最大化(EM)算法来估计线性预测器的固定参数、方差分量和SNP密度。通过应用于一个数据集和模拟来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验