Streltsov Victor A, Prokop Zbynek, Damborský Jirí, Nagata Yuji, Oakley Aaron, Wilce Matthew C J
Crystallography Centre, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
Biochemistry. 2003 Sep 2;42(34):10104-12. doi: 10.1021/bi027280a.
The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 A resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were reexamined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp(3)-hybridized carbon is the predominant electrophilic site for the S(N)2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC-MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular, Asp146 and Glu147, from the cap domain helices alpha(4) and alpha(5)('). Those residues were shifted mainly in direction toward the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.
卤代烷脱卤酶是一种解毒酶,可将多种卤代底物转化为相应的醇。测定了少动鞘氨醇UT26(LinB)卤代烷脱卤酶的完整晶体结构,以及LinB与1,2-丙二醇/1-溴丙烷-2-醇和2-溴-2-丙烯-1-醇的复合物结构,这两种物质分别是1,2-二溴丙烷和2,3-二溴丙烯脱溴反应的产物,分辨率为1.8埃的X射线衍射数据支持了上述结果。对已发表的天然LinB及其与1,3-丙二醇复合物的结构[Marek等人(2000年)《生物化学》39卷,14082 - 14086页]进行了重新审视。1,2-二溴丙烷和2,3-二溴丙烯分别发生的完全和部分脱溴反应,符合观察到的一般趋势,即sp(3)杂化碳是脱卤反应中双分子亲核取代反应(S(N)2)的主要亲电位点。通过气相色谱 - 质谱(GC - MS)技术在晶体中明确鉴定出2,3-二溴丙烯脱卤反应的产物2-溴-2-丙烯-1-醇。GC - MS鉴定也证实了晶体中1,2-二溴丙烷脱卤反应的产物1,2-丙二醇和1-溴丙烷-2-醇。天然LinB与其复合物的比较表明,帽结构域螺旋α(4)和α(5)(')中136 - 157位残基具有高度灵活性,特别是Asp146和Glu147。在复合物结构中,这些残基主要朝着配体分子的方向移动。帽结构域似乎更靠近核心,将底物挤压到更靠近催化三联体的活性中心。这也导致整个复合物结构略有收缩。晶体学分析检测到的灵活性与分子动力学模拟观察到的灵活性显著一致。