Marinelli Raul A, Tietz Pamela S, Caride Ariel J, Huang Bing Q, LaRusso Nicholas F
Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario-Santa Fe, Argentina.
J Biol Chem. 2003 Oct 31;278(44):43157-62. doi: 10.1074/jbc.M305899200. Epub 2003 Aug 25.
Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 +/- 4 mum.s-1 (25 degrees C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 +/- 5 mum.s-1 (25 degrees C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 +/- 4 mum.s-1; -25%) and canalicular (59 +/- 4 mum.s-1; -30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 +/- 135 mum.s-1, 25 degrees C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.
我们实验室之前的研究支持水通道蛋白(AQP)家族(一类水通道蛋白)在肝细胞胆汁分泌中发挥重要作用。为了进一步明确水跨肝细胞转运的途径和分子机制,我们通过停流分光光度法测量散射光强度,直接评估了高度纯化的大鼠肝细胞基底外侧膜囊泡(BLMV)和胆小管膜(CMV)囊泡的渗透水通透性(Pf)和活化能(Ea)。BLMV和CMV的散射光随时间变化过程很好地拟合为单指数函数。在BLMV中,Pf为108±4μm·s-1(25℃),Ea为7.7 kcal/mol;在CMV中,Pf为86±5μm·s-1(25℃),Ea为8.0 kcal/mol。水通道蛋白阻断剂二甲基亚砜显著抑制了基底外侧膜囊泡(81±4μm·s-1;-25%)和胆小管膜囊泡(59±4μm·s-1;-30%)的Pf。当从用二丁酰环磷腺苷(dibutyryl cAMP)处理的肝细胞中分离CMV时,需要双指数拟合,这意味着存在两个功能不同的囊泡群体;一个群体的Pf和Ea值与未处理肝细胞的CMV相似,但另一个群体具有非常高的Pf(655±135μm·s-1,25℃)和非常低的Ea(2.8 kcal/mol)。二甲基亚砜完全抑制了第二个囊泡群体中的高Pf值。相比之下,肝细胞经cAMP处理后,BLMV的Pf和Ea未发生改变。我们的结果与存在脂质介导和水通道蛋白介导的途径用于水跨肝细胞质膜屏障的基底外侧和胆小管转运一致。我们的数据还表明,肝细胞胆小管膜区域是跨细胞水转运的限速部位,当肝细胞暴露于利胆激动剂时,该区域对水的通透性增加,推测是通过水通道蛋白分子的插入实现的。这些数据提示了在胆小管胆汁形成过程中渗透活性溶质与水转运有效偶联的分子机制。