Knoblauch Michael, Noll Gundula A, Müller Torsten, Prüfer Dirk, Schneider-Hüther Ingrid, Scharner Dörte, Van Bel Aart J E, Peters Winfried S
Institut für Allgemeine Botanik der Justus Liebig-Universität, Senckenbergstr. 17-21, D-35390 Giessen, Germany.
Nat Mater. 2003 Sep;2(9):600-3. doi: 10.1038/nmat960. Epub 2003 Aug 24.
Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical environments can be disadvantagous. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality, but they are rare. Protein bodies from sieve elements of higher plants provide a novel example. sieve elements form microfluidics systems for pressure-driven transport of photo-assimilates throughout the plant. Unique protein bodies in the sieve elements of legumes act as cellular stopcocks, by undergoing a Ca2+-dependent conformational switch in which they plug the sieve element. In living cells, this reaction is probably controlled by Ca2+-transporters in the cell membrane. Here we report the rapid, reversible, anisotropic and ATP-independent contractility in these protein bodies in vitro. Considering the unique biological function of the legume 'crystalloid' protein bodies and their contractile properties, we suggest to give them the distinctive name forisome ('gate-body'; from the Latin foris, the wing of a gate).
新兴技术正引发人们对智能材料日益浓厚的兴趣,这类材料有望成为微纳器件中的致动器。目前所研究的机械活性聚合物包括多种材料。三磷酸腺苷(ATP)驱动的马达蛋白作为活细胞的致动器,具有良好的特性,但其对严格限定化学环境的依赖可能是不利的。通过熵机制可逆变形的天然蛋白质或许可作为具有有用功能的人工收缩多肽的模型,但这类蛋白质较为罕见。高等植物筛管分子中的蛋白质体提供了一个新例子。筛管分子形成微流体系统,用于在整个植物中进行压力驱动的光同化物运输。豆科植物筛管分子中的独特蛋白质体通过经历依赖钙离子的构象转换(在此过程中它们堵塞筛管分子)而充当细胞旋塞阀。在活细胞中,此反应可能受细胞膜中钙离子转运体的控制。在此我们报道了这些蛋白质体在体外具有快速、可逆、各向异性且不依赖ATP的收缩性。考虑到豆科植物“类晶体”蛋白质体的独特生物学功能及其收缩特性,我们建议赋予它们一个独特的名称——forisome(“门体”;源自拉丁语foris,意为门的翼)。