Novikova Irina V, Sharma Noopur, Moser Trevor, Sontag Ryan, Liu Yan, Collazo Michael J, Cascio Duilio, Shokuhfar Tolou, Hellmann Hanjo, Knoblauch Michael, Evans James E
1Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA.
2School of Biological Sciences, Washington State University, Pullman, WA 99164 USA.
Adv Struct Chem Imaging. 2018;4(1):13. doi: 10.1186/s40679-018-0062-9. Epub 2018 Nov 10.
One of the biggest bottlenecks for structural analysis of proteins remains the creation of high-yield and high-purity samples of the target protein. Cell-free protein synthesis technologies are powerful and customizable platforms for obtaining functional proteins of interest in short timeframes, while avoiding potential toxicity issues and permitting high-throughput screening. These methods have benefited many areas of genomic and proteomics research, therapeutics, vaccine development and protein chip constructions. In this work, we demonstrate a versatile and multiscale eukaryotic wheat germ cell-free protein expression pipeline to generate functional proteins of different sizes from multiple host organism and DNA source origins. We also report on a robust purification procedure, which can produce highly pure (> 98%) proteins with no specialized equipment required and minimal time invested. This pipeline successfully produced and analyzed proteins in all three major geometry formats used for structural biology including single particle analysis with electron microscopy, and both two-dimensional and three-dimensional protein crystallography. The flexibility of the wheat germ system in combination with the multiscale pipeline described here provides a new workflow for rapid production and purification of samples that may not be amenable to other recombinant approaches for structural characterization.
蛋白质结构分析的最大瓶颈之一仍然是目标蛋白质高产率和高纯度样品的制备。无细胞蛋白质合成技术是功能强大且可定制的平台,能够在短时间内获得感兴趣的功能蛋白质,同时避免潜在的毒性问题,并允许进行高通量筛选。这些方法已在基因组学和蛋白质组学研究、治疗学、疫苗开发及蛋白质芯片构建等诸多领域发挥了作用。在这项工作中,我们展示了一种通用的多尺度真核小麦胚无细胞蛋白质表达流程,可从多种宿主生物体和DNA源生成不同大小的功能蛋白质。我们还报告了一种稳健的纯化程序,该程序无需专门设备且投入时间最少,就能生产出高纯度(>98%)的蛋白质。此流程成功生产并分析了用于结构生物学的所有三种主要几何形式的蛋白质,包括电子显微镜单颗粒分析以及二维和三维蛋白质晶体学。小麦胚系统的灵活性与本文所述的多尺度流程相结合,为快速生产和纯化可能不适用于其他重组结构表征方法的样品提供了一种新的工作流程。