Suppr超能文献

末端消除法、色氨酸旋转异构体和荧光寿命。

The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes.

作者信息

Hellings Mario, De Maeyer Marc, Verheyden Stefan, Hao Qiang, Van Damme Els J M, Peumans Willy J, Engelborghs Yves

机构信息

Laboratory of Biomolecular Dynamics, Catholic University of Leuven, Heverlee, Belgium.

出版信息

Biophys J. 2003 Sep;85(3):1894-902. doi: 10.1016/s0006-3495(03)74617-7.

Abstract

The Dead-End Elimination method was used to identify 40 low energy microconformations of 16 tryptophan residues in eight proteins. Single Trp-mutants of these proteins all show a double- or triple-exponential fluorescence decay. For ten of these lifetimes the corresponding rotameric state could be identified by comparing the bimolecular acrylamide quenching constant (k(q)) and the relative solvent exposure of the side chain in that microstate. In the absence of any identifiable quencher, the origin of the lifetime heterogeneity is interpreted in terms of the electron transfer process from the indole C epsilon 3 atom to the carbonyl carbon of the peptide bond. Therefore it is expected that a shorter [C epsilon 3-C[double bond]O] distance leads to a shorter lifetime as observed for these ten rotamers. Applying the same rule to the other 30 lifetimes, a link with their corresponding rotameric state could also be made. In agreement with the theory of Marcus and Sutin, the nonradiative rate constant shows an exponential relationship with the [C epsilon 3-C[double bond]O] distance for the 40 datapoints.

摘要

采用死端消除法确定了8种蛋白质中16个色氨酸残基的40种低能微构象。这些蛋白质的单个色氨酸突变体均表现出双指数或三指数荧光衰减。对于其中10种寿命,通过比较双分子丙烯酰胺猝灭常数(k(q))和该微状态下侧链的相对溶剂暴露程度,可以确定相应的旋转异构体状态。在没有任何可识别猝灭剂的情况下,寿命异质性的起源是根据从吲哚Cε3原子到肽键羰基碳的电子转移过程来解释的。因此,正如这10种旋转异构体所观察到的那样,预计较短的[Cε3-C=O]距离会导致较短的寿命。将相同规则应用于其他30种寿命,也可以将它们与相应的旋转异构体状态联系起来。与Marcus和Sutin的理论一致,对于这40个数据点,非辐射速率常数与[Cε3-C=O]距离呈指数关系。

相似文献

1
The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes.
Biophys J. 2003 Sep;85(3):1894-902. doi: 10.1016/s0006-3495(03)74617-7.
2
Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
J Am Chem Soc. 2002 Aug 7;124(31):9278-86. doi: 10.1021/ja0167710.
4
Tryptophan rotamers as evidenced by X-ray, fluorescence lifetimes, and molecular dynamics modeling.
Biophys J. 2006 Aug 1;91(3):816-23. doi: 10.1529/biophysj.106.085100. Epub 2006 May 12.
5
Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
Biophys J. 1997 Aug;73(2):1042-55. doi: 10.1016/S0006-3495(97)78137-2.
6
The analysis of time resolved protein fluorescence in multi-tryptophan proteins.
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 14;57(11):2255-70. doi: 10.1016/s1386-1425(01)00485-1.
8
Peptide sequence and conformation strongly influence tryptophan fluorescence.
Biophys J. 2008 Mar 15;94(6):2280-7. doi: 10.1529/biophysj.107.116921. Epub 2007 Dec 7.
10
Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
J Phys Chem B. 2011 Mar 31;115(12):3245-53. doi: 10.1021/jp111925w. Epub 2011 Mar 3.

引用本文的文献

2
Comparison of tryptophan fluorescence lifetimes in cyanobacterial photosystem I frozen in the light and in the dark.
Photosynth Res. 2019 Mar;139(1-3):441-448. doi: 10.1007/s11120-018-0595-8. Epub 2018 Oct 23.
4
Tryptophan conformations associated with partial unfolding in ribonuclease T1.
Biophys J. 2009 Sep 16;97(6):1778-86. doi: 10.1016/j.bpj.2009.07.015.
6
Tryptophan fluorescence reveals the presence of long-range interactions in the denatured state of ribonuclease Sa.
Biophys J. 2008 Mar 15;94(6):2288-96. doi: 10.1529/biophysj.107.116954. Epub 2007 Dec 7.
7
Study of the interaction between Apis mellifera venom and micro-heterogeneous systems.
J Fluoresc. 2006 May;16(3):423-30. doi: 10.1007/s10895-006-0077-9. Epub 2006 May 16.
8
Tryptophan rotamers as evidenced by X-ray, fluorescence lifetimes, and molecular dynamics modeling.
Biophys J. 2006 Aug 1;91(3):816-23. doi: 10.1529/biophysj.106.085100. Epub 2006 May 12.
9
Protein simulations: the absorption spectrum of barnase point mutants.
Protein Sci. 2004 Jul;13(7):1823-31. doi: 10.1110/ps.04652804.
10
Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
Biophys J. 2004 Jun;86(6):3828-35. doi: 10.1529/biophysj.103.038901.

本文引用的文献

1
The dead-end elimination theorem and its use in protein side-chain positioning.
Nature. 1992 Apr 9;356(6369):539-42. doi: 10.1038/356539a0.
2
Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
J Am Chem Soc. 2002 Aug 7;124(31):9278-86. doi: 10.1021/ja0167710.
4
HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays.
Biophys J. 2001 Jul;81(1):473-89. doi: 10.1016/S0006-3495(01)75715-3.
8
Energy functions for protein design.
Curr Opin Struct Biol. 1999 Aug;9(4):509-13. doi: 10.1016/s0959-440x(99)80072-4.
9
Intrinsic beta-sheet propensities result from van der Waals interactions between side chains and the local backbone.
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9074-6. doi: 10.1073/pnas.96.16.9074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验