Suppr超能文献

环六肽中色氨酸荧光的构象效应

Conformational effects on tryptophan fluorescence in cyclic hexapeptides.

作者信息

Pan Chia-Pin, Barkley Mary D

机构信息

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Biophys J. 2004 Jun;86(6):3828-35. doi: 10.1529/biophysj.103.038901.

Abstract

The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.

摘要

肽键通过激发态电子转移淬灭色氨酸荧光,这可能是肽和蛋白质荧光强度变化的主要原因。设计了一系列七种肽,它们都含有单个色氨酸、相同的氨基酸组成,且肽键是唯一已知的淬灭基团。通过一维和二维¹H-NMR确定了这些肽的溶液结构和侧链χ(1)旋转异构体群体。所有肽都具有单一的主链构象。色氨酸的-、ψ-角和χ(1)旋转异构体群体随序列位置而变化。这些肽在5℃下的荧光发射最大值为350-355nm,量子产率为0.04-0.24,荧光衰减为三重指数形式,寿命分别为4.4-6.6、1.4-3.2和0.2-1.0ns。通过将主要寿命成分分配给主要的NMR确定的χ(1)旋转异构体,六种肽的寿命与基态构象相关。在五种肽中,色氨酸的χ(1)=-60°旋转异构体的寿命为2.7-5.5ns,这取决于局部主链构象。在一种肽中,χ(1)=180°旋转异构体的寿命为0.5ns。这一系列小肽生动地证明了肽键淬灭在色氨酸荧光中的主导作用。

相似文献

1
Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
Biophys J. 2004 Jun;86(6):3828-35. doi: 10.1529/biophysj.103.038901.
2
Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
J Am Chem Soc. 2002 Aug 7;124(31):9278-86. doi: 10.1021/ja0167710.
4
Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
J Phys Chem B. 2011 Mar 31;115(12):3245-53. doi: 10.1021/jp111925w. Epub 2011 Mar 3.
5
Tryptophan rotamer distributions in amphipathic peptides at a lipid surface.
Biophys J. 1999 Jun;76(6):3235-42. doi: 10.1016/S0006-3495(99)77475-8.
7
Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides.
J Phys Chem B. 2006 Apr 6;110(13):7009-16. doi: 10.1021/jp056164p.
8
Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
Proteins. 2012 Jan;80(1):239-45. doi: 10.1002/prot.23198. Epub 2011 Nov 9.

引用本文的文献

1
Selective Excitation of the L State of Tryptophan in Collagen-like Peptides Can Reveal the Formation of a Heterotrimer.
ACS Omega. 2024 Jun 26;9(27):29848-29856. doi: 10.1021/acsomega.4c03600. eCollection 2024 Jul 9.
4
Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers.
Spectrochim Acta A Mol Biomol Spectrosc. 2015;150:909-20. doi: 10.1016/j.saa.2015.06.043. Epub 2015 Jun 19.
5
Tryptophan-to-heme electron transfer in ferrous myoglobins.
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5602-6. doi: 10.1073/pnas.1423186112. Epub 2015 Apr 20.
6
Polyubiquitin Drives the Molecular Interactions of the NF-κB Essential Modulator (NEMO) by Allosteric Regulation.
J Biol Chem. 2015 May 29;290(22):14130-9. doi: 10.1074/jbc.M115.640417. Epub 2015 Apr 12.
7
Probing tertiary structure of proteins using single Trp mutations with circular dichroism at low temperature.
J Phys Chem B. 2014 Jan 30;118(4):986-95. doi: 10.1021/jp4120145. Epub 2014 Jan 17.
9
Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy.
Eur Biophys J. 2013 Dec;42(11-12):819-31. doi: 10.1007/s00249-013-0930-0. Epub 2013 Oct 5.
10
Tryptophan rotamer distribution revealed for the α-helix in tear lipocalin by site-directed tryptophan fluorescence.
J Phys Chem B. 2012 Nov 15;116(45):13381-8. doi: 10.1021/jp309318r. Epub 2012 Nov 2.

本文引用的文献

1
Electron transfer between biological molecules by thermally activated tunneling.
Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640-4. doi: 10.1073/pnas.71.9.3640.
2
The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes.
Biophys J. 2003 Sep;85(3):1894-902. doi: 10.1016/s0006-3495(03)74617-7.
4
Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
J Am Chem Soc. 2002 Aug 7;124(31):9278-86. doi: 10.1021/ja0167710.
6
HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays.
Biophys J. 2001 Jul;81(1):473-89. doi: 10.1016/S0006-3495(01)75715-3.
7
Mechanisms of tryptophan fluorescence shifts in proteins.
Biophys J. 2001 May;80(5):2093-109. doi: 10.1016/S0006-3495(01)76183-8.
8
On spectral relaxation in proteins.
Photochem Photobiol. 2000 Oct;72(4):421-37. doi: 10.1562/0031-8655(2000)072<0421:OSRIP>2.0.CO;2.
9
Aromatic interactions in homeodomains contribute to the low quantum yield of a conserved, buried tryptophan.
Proteins. 2000 Jul 1;40(1):112-25. doi: 10.1002/(sici)1097-0134(20000701)40:1<112::aid-prot130>3.0.co;2-c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验