Jacobson T, Liberati S, Mattingly D
Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA.
Nature. 2003 Aug 28;424(6952):1019-21. doi: 10.1038/nature01882.
Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.
狭义相对论断言,对于所有非加速观察者而言,物理现象都是相同的。这被称为洛伦兹对称性,它将长波长与短波长联系起来:如果对称性是精确的,这意味着时空在所有长度尺度上看起来都必须相同。然而,几种量子引力方法表明,可能存在一种时空微观结构,导致洛伦兹对称性被破坏。这可能是由于时空的离散性或非对易性,或者是由于额外维度的作用而产生的。在这里,我们对一种导致最大电子速度小于光速的洛伦兹违反类型确定了一个非常强的限制。我们利用对蟹状星云100兆电子伏特同步辐射的观测,将先前的限制提高了4000万倍,排除了这种类型的洛伦兹违反,从而对量子引力理论提供了一个重要的限制。