Abdo A A, Ackermann M, Ajello M, Asano K, Atwood W B, Axelsson M, Baldini L, Ballet J, Barbiellini G, Baring M G, Bastieri D, Bechtol K, Bellazzini R, Berenji B, Bhat P N, Bissaldi E, Bloom E D, Bonamente E, Bonnell J, Borgland A W, Bouvier A, Bregeon J, Brez A, Briggs M S, Brigida M, Bruel P, Burgess J M, Burnett T H, Caliandro G A, Cameron R A, Caraveo P A, Casandjian J M, Cecchi C, Celik O, Chaplin V, Charles E, Cheung C C, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky L R, Connaughton V, Conrad J, Cutini S, Dermer C D, de Angelis A, de Palma F, Digel S W, Dingus B L, do Couto E Silva E, Drell P S, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan S J, Finke J, Fishman G, Focke W B, Foschini L, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Gibby L, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Granot J, Greiner J, Grenier I A, Grondin M-H, Grove J E, Grupe D, Guillemot L, Guiriec S, Hanabata Y, Harding A K, Hayashida M, Hays E, Hoversten E A, Hughes R E, Jóhannesson G, Johnson A S, Johnson R P, Johnson W N, Kamae T, Katagiri H, Kataoka J, Kawai N, Kerr M, Kippen R M, Knödlseder J, Kocevski D, Kouveliotou C, Kuehn F, Kuss M, Lande J, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette M N, Lubrano P, Madejski G M, Makeev A, Mazziotta M N, McBreen S, McEnery J E, McGlynn S, Mészáros P, Meurer C, Michelson P F, Mitthumsiri W, Mizuno T, Moiseev A A, Monte C, Monzani M E, Moretti E, Morselli A, Moskalenko I V, Murgia S, Nakamori T, Nolan P L, Norris J P, Nuss E, Ohno M, Ohsugi T, Omodei N, Orlando E, Ormes J F, Ozaki M, Paciesas W S, Paneque D, Panetta J H, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Petrosian V, Piron F, Porter T A, Preece R, Rainò S, Ramirez-Ruiz E, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Reposeur T, Ritz S, Rochester L S, Rodriguez A Y, Roth M, Ryde F, Sadrozinski H F-W, Sanchez D, Sander A, Saz Parkinson P M, Scargle J D, Schalk T L, Sgrò C, Siskind E J, Smith D A, Smith P D, Spandre G, Spinelli P, Stamatikos M, Stecker F W, Strickman M S, Suson D J, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer J B, Thayer J G, Thompson D J, Tibaldo L, Toma K, Torres D F, Tosti G, Troja E, Uchiyama Y, Uehara T, Usher T L, van der Horst A J, Vasileiou V, Vilchez N, Vitale V, von Kienlin A, Waite A P, Wang P, Wilson-Hodge C, Winer B L, Wood K S, Wu X F, Yamazaki R, Ylinen T, Ziegler M
Space Science Division, Naval Research Laboratory, Washington, District of Columbia 20375, USA.
Nature. 2009 Nov 19;462(7271):331-4. doi: 10.1038/nature08574. Epub 2009 Oct 28.
A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.
爱因斯坦狭义相对论的一个基石是洛伦兹不变性——即假设所有观察者在真空中测量到的光速完全相同,与光子能量无关。虽然狭义相对论假定不存在与这种不变性相关的基本长度尺度,但存在一个基本尺度(普朗克尺度,l(普朗克)约为1.62×10^(-33)厘米或E(普朗克)=M(普朗克)c²约为1.22×10^(19)吉电子伏特),在这个尺度上,量子效应预计会强烈影响时空的性质。人们对(尚未得到验证的)洛伦兹不变性可能在普朗克尺度附近被打破这一观点非常感兴趣。这种对洛伦兹不变性的违反的一个关键测试是光子速度可能随能量变化。即使光子速度有微小变化,当在宇宙学光传播时间内积累时,通过观察伽马射线暴(GRB)光变曲线中的尖锐特征也可能被揭示出来。在这里,我们报告了对来自遥远且短暂的伽马射线暴090510高达约31吉电子伏特的辐射的探测。我们没有发现违反洛伦兹不变性的证据,并在线性能量依赖(或反波长依赖)的尺度上设定了1.2E(普朗克)的下限,这是在对辐射做出合理假设的情况下(等效地,我们对该效应的长度尺度有l(普朗克)/1.2的上限)。我们的结果不支持那些认为非常小尺度上时空的量子性质会线性改变光速的量子引力理论。