Suppr超能文献

腺苷与脑缺血

Adenosine and brain ischemia.

作者信息

Rudolphi K A, Schubert P, Parkinson F E, Fredholm B B

机构信息

Hoechst AG Werk Kalle-Albert, Wiesbaden, Germany.

出版信息

Cerebrovasc Brain Metab Rev. 1992 Winter;4(4):346-69.

PMID:1486019
Abstract

Recent experimental data indicate a probable role of adenosine as an endogenous neuroprotective substance in brain ischemia. This nucleoside is rapidly formed during ischemia as a result of intracellular breakdown of ATP and it is subsequently transported into the extracellular space. With use of microdialysis and other techniques, a massive increase of interstitial adenosine has been measured during ischemia in different brain areas. Adenosine acts through two subtypes of receptors, A1 and A2, which are located on neurons, glial cells, blood vessels, platelets, and leukocytes and are linked via G-proteins to different effector systems such as adenylate cyclase and membrane ion channels. There is a very high density of A1-receptors in the hippocampus, an area with specific vulnerability to ischemia. In different in vivo and in vitro models of brain ischemia, the pharmacological manipulation of the adenosine system by adenosine receptor antagonists tended to aggravate ischemic brain damage, whereas the reinforcement of adenosine action by receptor agonists or inhibitors of cellular reuptake and inactivation showed neuroprotection. The up-regulation of adenosine A1-receptor number and affinity by chronic preadministration of the competitive antagonist caffeine also attenuated ischemic brain damage. The mechanisms underlying the neuroprotective effects of adenosine seem to involve both types of adenosine receptors, A1 and A2, but the A1-mediated pre- and postsynaptic neuromodulation may be of special importance. By inhibiting neuronal Ca2+ influx, adenosine counteracts the presynaptic release of the potentially excitotoxic neurotransmitters glutamate and aspartate, which may impair intracellular Ca2+ homeostasis via metabotrophic glutamate receptors or induce uncontrolled membrane depolarization via ion channel-linked glutamate receptors, especially of the N-methyl-D-aspartate (NMDA) type. In addition, adenosine directly stabilizes the neuronal membrane potential by increasing the conductance for K+ and Cl- ions, thereby counteracting excessive membrane depolarization. The latter triggers a number of pathological events including blockade of voltage-sensitive K+ currents, increase of NMDA receptor-mediated Ca2+ influx, and presumably also impairment of glutamate uptake by astrocytes. In the way of a vicious cycle, all these factors again tend to enhance extracellular glutamate levels and membrane depolarization, finally leading to cytotoxic calcium loading and neuronal cell death. In addition to its important neuromodulatory effects, which tend to reduce energy demand of the brain, adenosine acting via A2-receptors in brain vessels, platelets, and neutrophilic granulocytes may improve the cerebral microcirculation and thus oxygen and substrate supply to the tissue. There is evidence that the functional state of adenosine receptors is impaired during ischemia, limiting the time window of the adenosine action.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

最近的实验数据表明,腺苷作为一种内源性神经保护物质在脑缺血中可能发挥作用。这种核苷在缺血期间由于ATP的细胞内分解而迅速形成,随后被转运到细胞外空间。通过微透析和其他技术,已检测到在不同脑区缺血期间间质腺苷大量增加。腺苷通过两种受体亚型A1和A2发挥作用,它们位于神经元、胶质细胞、血管、血小板和白细胞上,并通过G蛋白与不同的效应系统相连,如腺苷酸环化酶和膜离子通道。海马体中A1受体的密度非常高,该区域对缺血具有特殊易损性。在不同的脑缺血体内和体外模型中,用腺苷受体拮抗剂对腺苷系统进行药理操作往往会加重缺血性脑损伤,而用受体激动剂或细胞再摄取及失活抑制剂增强腺苷作用则显示出神经保护作用。通过竞争性拮抗剂咖啡因的慢性预给药使腺苷A1受体数量和亲和力上调也减轻了缺血性脑损伤。腺苷神经保护作用的潜在机制似乎涉及A1和A2两种腺苷受体类型,但A1介导的突触前和突触后神经调节可能尤为重要。通过抑制神经元Ca2+内流,腺苷可抵消潜在兴奋性神经递质谷氨酸和天冬氨酸的突触前释放,这两种神经递质可能通过代谢型谷氨酸受体损害细胞内Ca2+稳态,或通过离子通道连接的谷氨酸受体,尤其是N-甲基-D-天冬氨酸(NMDA)型受体诱导不受控制的膜去极化。此外,腺苷通过增加K+和Cl-离子的电导直接稳定神经元膜电位,从而抵消过度的膜去极化。后者引发许多病理事件,包括电压敏感性K+电流的阻断、NMDA受体介导的Ca2+内流增加,以及可能还有星形胶质细胞对谷氨酸摄取的损害。以恶性循环的方式,所有这些因素又往往会提高细胞外谷氨酸水平和膜去极化,最终导致细胞毒性钙负荷和神经元细胞死亡。除了其重要的神经调节作用(往往会降低大脑的能量需求)外,腺苷通过脑血管、血小板和嗜中性粒细胞中的A2受体发挥作用,可能会改善脑微循环,从而改善组织的氧气和底物供应。有证据表明,缺血期间腺苷受体的功能状态受损,限制了腺苷作用的时间窗。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验