Suppr超能文献

叶绿体生物发生87:叶绿素生物合成途径的四吡咯中间体与叶绿素a之间共振激发能量转移的证据。

Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.

作者信息

Kolossov Vladimir L, Kopetz Karen J, Rebeiz Constantin A

机构信息

Laboratory of Plant Biochemistry and Photobiology, University of Illinois, Urbana, IL 61801, USA.

出版信息

Photochem Photobiol. 2003 Aug;78(2):184-96. doi: 10.1562/0031-8655(2003)078<0184:cbeore>2.0.co;2.

Abstract

The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.

摘要

对光合膜组装的深入理解需要更深入地了解叶绿素(Chl)和类囊体脱辅基蛋白生物合成的协调过程。作为未来研究的一个工作模型,我们提出了三种叶绿素 - 类囊体脱辅基蛋白生物合成模型,即单分支叶绿素生物合成途径(SBP)单定位模型、SBP多定位模型和多分支叶绿素生物合成途径(MBP)亚定位模型。这些模型的否定或验证可以通过测定叶绿素生物合成途径中各种四吡咯中间体与各种类囊体叶绿素 - 蛋白复合物之间的共振激发能量转移来探究。在本研究中,我们描述了原卟啉IX(Proto)、镁原卟啉及其单甲酯(Mp(e))、二乙烯基和单乙烯基原叶绿素酸a(Pchlide a)与几种叶绿素 - 蛋白复合物之间共振能量转移的检测。通过将切除的组织在δ-氨基乙酰丙酸(ALA)和不同浓度的2,2'-联吡啶中暗培养不同时间,在光周期生长的绿色黄瓜子叶和大麦叶片中诱导不同量的四吡咯积累。对照组在蒸馏水中培养。质体分离后,将处理过的质体和对照质体在缓冲甘油中稀释至相同的叶绿素浓度。然后在77 K下,在约686、694和738 nm的发射最大值处记录激发光谱。通过计算处理组减去对照组的差异激发光谱,观察到从Proto、Mp(e)和Pchlide a到在686、694和738 nm处发射的叶绿素 - 蛋白复合物的共振激发能量转移。合成四吡咯与叶绿素 - 蛋白复合物之间共振激发能量转移的出现表现为定义明确的激发带,其激发最大值与Proto、Mp(e)和Pchlide a的激发最大值相对应。此外,似乎发生了从多个短波长、中波长和长波长的Proto、Mp(e)和叶绿素酸a位点到各种叶绿素 - 蛋白复合物的共振激发能量转移。由于供体到受体的共振激发转移在距离大于100 Å时不会发生,因此有人提出观察到的共振激发能量转移与SBP单定位叶绿素生物合成类囊体膜生物发生模型不相符。后者假设位于450×130 Å光合单位中心的单分支叶绿素生物合成途径产生组装所有叶绿素 - 蛋白复合物所需的所有叶绿素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验