Suppr超能文献

叶绿体生物发生。高等植物中叶绿素生物合成的单乙烯基和二乙烯基单羧酸途径的证明。

Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.

作者信息

Tripathy B C, Rebeiz C A

出版信息

J Biol Chem. 1986 Oct 15;261(29):13556-64.

PMID:3759979
Abstract

It is shown that barley (Hordeum vulgare), a dark monovinyl/light divinyl plant species, and cucumber (Cucumis sativus L.) a dark divinyl/light divinyl plant species synthesize monovinyl and divinyl protochlorophyllide in darkness from monovinyl and divinyl protoporphyrin IX via two distinct monovinyl and divinyl monocarboxylic chlorophyll biosynthetic routes. Evidence for the operation of monovinyl monocarboxylic biosynthetic routes consisted (a) in demonstrating the conversion of delta-aminolevulinic acid to monovinyl protoporphyrin and to monovinyl Mg-protoporphyrins, and (b) in demonstrating the conversion of these tetrapyrroles to monovinyl protochlorophyllide by both isolated barley and cucumber etiochloroplasts. Likewise, evidence for the operation of divinyl monocarboxylic chlorophyll biosynthetic routes consisted (a) in demonstrating the biosynthesis of divinyl protoporphyrin and divinyl Mg-protoporphyrins from delta-aminolevulinic acid, and (b) in demonstrating the conversion of the latter tetrapyrroles to divinyl protochlorophyllide. Finally, it was shown that the divinyl tetrapyrrole substrates were metabolized differently by barley and cucumber. For example, divinyl protoporphyrin, divinyl Mg-protoporphyrin, and divinyl Mg-protoporphyrin monoester were converted predominantly to monovinyl protochlorophyllide and to smaller amounts of divinyl protochlorophyllide by barley etiochloroplasts. In contrast, cucumber etiochloroplasts converted the above substrates predominantly to divinyl protochlorophyllide, although smaller amounts of monovinyl protochlorophyllide were also formed. Furthermore, it was shown that monovinyl protochlorophyllide was not formed from divinyl protochlorophyllide either in barley or in cucumber etiochloroplasts. These metabolic differences are explained by the presence of strong biosynthetic interconnections between the divinyl and monovinyl monocarboxylic routes, prior to divinyl protochlorophyllide formation, in barley but not in cucumber.

摘要

研究表明,大麦(Hordeum vulgare)是一种暗单乙烯基/光双乙烯基植物物种,黄瓜(Cucumis sativus L.)是一种暗双乙烯基/光双乙烯基植物物种,它们在黑暗中通过两条不同的单乙烯基和双乙烯基单羧酸叶绿素生物合成途径,分别从单乙烯基和双乙烯基原卟啉IX合成单乙烯基和双乙烯基原叶绿素酸酯。单乙烯基单羧酸生物合成途径运行的证据包括:(a)证明δ-氨基乙酰丙酸转化为单乙烯基原卟啉和单乙烯基镁原卟啉;(b)证明分离得到的大麦和黄瓜黄化叶绿体可将这些四吡咯转化为单乙烯基原叶绿素酸酯。同样,双乙烯基单羧酸叶绿素生物合成途径运行的证据包括:(a)证明从δ-氨基乙酰丙酸生物合成双乙烯基原卟啉和双乙烯基镁原卟啉;(b)证明将后一种四吡咯转化为双乙烯基原叶绿素酸酯。最后,研究表明大麦和黄瓜对双乙烯基四吡咯底物的代谢方式不同。例如,大麦黄化叶绿体将双乙烯基原卟啉、双乙烯基镁原卟啉和双乙烯基镁原卟啉单酯主要转化为单乙烯基原叶绿素酸酯,同时也生成少量的双乙烯基原叶绿素酸酯。相比之下,黄瓜黄化叶绿体将上述底物主要转化为双乙烯基原叶绿素酸酯,不过也会生成少量的单乙烯基原叶绿素酸酯。此外,研究还表明,在大麦或黄瓜黄化叶绿体中,双乙烯基原叶绿素酸酯都不会转化为单乙烯基原叶绿素酸酯。这些代谢差异的原因是,在大麦中,双乙烯基原叶绿素酸酯形成之前,双乙烯基和单乙烯基单羧酸途径之间存在强烈的生物合成联系,而黄瓜中则不存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验