Suppr超能文献

利用神经网络通过雨水水质数据识别土地利用情况。

Identification of land use with water quality data in stormwater using a neural network.

作者信息

Ha Haejin, Stenstrom Michael K

机构信息

Department of Civil and Environmental Engineering, University of California, 5714 Boelter Hall, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Water Res. 2003 Oct;37(17):4222-30. doi: 10.1016/S0043-1354(03)00344-0.

Abstract

To control stormwater pollution effectively, development of innovative, land-use-related control strategies will be required. An approach that could differentiate land-use types from stormwater quality would be the first step to solving this problem. We propose a neural network approach to examine the relationship between stormwater water quality and various types of land use. The neural network model can be used to identify land-use types for future known and unknown cases. The neural model uses a Bayesian network and has 10 water quality input variables, four neurons in the hidden layer, and five land-use target variables (commercial, industrial, residential, transportation, and vacant). We obtained 92.3 percent of correct classification and 0.157 root-mean-squared error on test files. Based on the neural model, simulations were performed to predict the land-use type of a known data set, which was not used when developing the model. The simulation accurately described the behavior of the new data set. This study demonstrates that a neural network can be effectively used to produce land-use type classification with water quality data.

摘要

为有效控制雨水污染,将需要制定与土地利用相关的创新控制策略。一种能够根据雨水水质区分土地利用类型的方法将是解决此问题的第一步。我们提出一种神经网络方法来研究雨水水质与各类土地利用之间的关系。神经网络模型可用于识别未来已知和未知情况下的土地利用类型。该神经模型使用贝叶斯网络,有10个水质输入变量、隐藏层中的4个神经元以及5个土地利用目标变量(商业、工业、住宅、交通和闲置)。我们在测试文件上获得了92.3%的正确分类率和0.157的均方根误差。基于该神经模型,进行了模拟以预测已知数据集的土地利用类型,该数据集在模型开发时未被使用。模拟准确地描述了新数据集的行为。本研究表明,神经网络可有效地用于根据水质数据进行土地利用类型分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验