Suppr超能文献

利用人工神经网络预测和评估干旱对地表水水质的影响——以伊朗扎扬德河为例。

Prediction and assessment of drought effects on surface water quality using artificial neural networks: case study of Zayandehrud River, Iran.

机构信息

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran.

出版信息

J Environ Health Sci Eng. 2015 Oct 8;13:68. doi: 10.1186/s40201-015-0227-6. eCollection 2015.

Abstract

Although drought impacts on water quantity are widely recognized, the impacts on water quality are less known. The Zayandehrud River basin in the west-central part of Iran plateau witnessed an increased contamination during the recent droughts and low flows. The river has been receiving wastewater and effluents from the villages, a number of small and large industries, and irrigation drainage systems along its course. What makes the situation even worse is the drought period the river basin has been going through over the last decade. Therefore, a river quality management model is required to include the adverse effects of industrial development in the region and the destructive effects of droughts which affect the river's water quality and its surrounding environment. Developing such a model naturally presupposes investigations into pollution effects in terms of both quality and quantity to be used in such management tools as mathematical models to predict the water quality of the river and to prevent pollution escalation in the environment. The present study aims to investigate electrical conductivity of the Zayandehrud River as a water quality parameter and to evaluate the effect of this parameter under drought conditions. For this purpose, artificial neural networks are used as a modeling tool to derive the relationship between electrical conductivity and the hydrological parameters of the Zayandehrud River. The models used in this research include multi-layer perceptron and radial basis function. Finally, these two models are compared in terms of their performance using the time series of electrical conductivity at eight monitoring-hydrometric stations during drought periods between the years 1997-2012. Results show that artificial neural networks can be used for modeling the relationship between electrical conductivity and hydrological parameters under drought conditions. It is further shown that radial basis function works better for the upstream stretches of the river while multi-layer perceptron is more efficient for the downstream stretches.

摘要

尽管干旱对水量的影响广为人知,但对水质的影响却知之甚少。伊朗高原中西部的赞詹德赫鲁德河流域在最近的干旱和低流量期间见证了污染的增加。该河流接收来自村庄、许多大小工业以及灌溉排水系统的废水和污水。更糟糕的是,该河流域在过去十年中经历了干旱期。因此,需要建立一个河流质量管理模型,将该地区工业发展的不利影响和影响河流水质及其周围环境的干旱的破坏性影响包括在内。自然地,开发这样的模型需要调查质量和数量方面的污染影响,以便将其用于数学模型等管理工具中,以预测河流的水质并防止环境中的污染升级。本研究旨在调查赞詹德赫鲁德河的电导率作为水质参数,并评估该参数在干旱条件下的影响。为此,人工神经网络被用作建模工具,以推导出电导率与赞詹德赫鲁德河的水文参数之间的关系。本研究中使用的模型包括多层感知器和径向基函数。最后,使用 1997-2012 年干旱期间八个监测水文站的电导率时间序列,比较了这两种模型的性能。结果表明,人工神经网络可用于在干旱条件下建立电导率与水文参数之间的关系模型。进一步表明,径向基函数在河流上游段表现更好,而多层感知器在下游段更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e0c/4597443/4b78b8c50f64/40201_2015_227_Fig1_HTML.jpg

相似文献

2
Seasonal drought effects on the water quality of the Biobío River, Central Chile.
Environ Sci Pollut Res Int. 2018 May;25(14):13844-13856. doi: 10.1007/s11356-018-1415-6. Epub 2018 Mar 6.
3
Drought impacts on river salinity in the southern US: Implications for water scarcity.
Sci Total Environ. 2018 Dec 10;644:844-853. doi: 10.1016/j.scitotenv.2018.06.373. Epub 2018 Jul 11.
4
Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation.
Environ Manage. 2016 Aug;58(2):193-207. doi: 10.1007/s00267-016-0712-4. Epub 2016 Jun 7.
5
Modeling water quality in an urban river using hydrological factors--data driven approaches.
J Environ Manage. 2015 Mar 15;151:87-96. doi: 10.1016/j.jenvman.2014.12.014. Epub 2014 Dec 24.
6
Effects of a drought period on physico-chemical surface water quality in a regional catchment area.
J Environ Monit. 2009 Jun;11(6):1298-302. doi: 10.1039/b816109g. Epub 2009 Apr 15.
7
How is the risk of hydrological drought in the Tarim River Basin, Northwest China?
Sci Total Environ. 2019 Nov 25;693:133555. doi: 10.1016/j.scitotenv.2019.07.361. Epub 2019 Jul 23.
8
Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin).
Environ Monit Assess. 2016 Dec;188(12):690. doi: 10.1007/s10661-016-5705-5. Epub 2016 Nov 24.
9
Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany.
Int J Hyg Environ Health. 2016 Oct;219(7 Pt B):671-680. doi: 10.1016/j.ijheh.2015.06.005. Epub 2015 Jun 23.
10
Impact of the 2018 drought on pharmaceutical concentrations and general water quality of the Rhine and Meuse rivers.
Sci Total Environ. 2021 Jul 15;778:146182. doi: 10.1016/j.scitotenv.2021.146182. Epub 2021 Mar 2.

引用本文的文献

本文引用的文献

2
Application of receptor models on water quality data in source apportionment in Kuantan River Basin.
Iranian J Environ Health Sci Eng. 2012 Dec 10;9(1):18. doi: 10.1186/1735-2746-9-18.
3
Identification of land use with water quality data in stormwater using a neural network.
Water Res. 2003 Oct;37(17):4222-30. doi: 10.1016/S0043-1354(03)00344-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验