Levy Amalia, Cohen Shmuel, Agranat Israel
Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Org Biomol Chem. 2003 Aug 7;1(15):2755-63. doi: 10.1039/b303041e.
The effects of introducing nitrogen atoms in the fjord regions and chalcogen bridges on the conformations of overcrowded bistricyclic aromatic enes (1, X not equal to Y) (BAEs) were studied. 9-(9'H-1',8'-Diazafluoren-9'-ylidene)-9H-thioxanthene (12), 9-(9H-1',8'-diazafluoren-9'-ylidene)-9H-selenoxanthene (13), 9-(9'H-1',8'-diazafluoren-9'-ylidene)-9H-telluroxanthene (14), 9-(9' H-1',8'-fluoren-9-ylidene)-9H-xanthene (15) and 9-(9' H-1',8'-fluoren-9'-ylidene)-9H-fluorene (16) were synthesized by two-fold extrusion coupling reactions of 1,8-diaza-9H-fluoren-9-one (19)/chalcoxanthenthiones (24-27) (or /9H-fluorene-9-thione (30)). The 1',8'-diazafluoren-9-ylidene-chalcoxanthenes (11) were compared with the respective fluoren-9-ylidene-chalcoxanthenes (10). The structures of 12-16 were established by 1H, 13C, 77Se, and 125Te NMR spectroscopies. The crystal and molecular structures of 12-14 were determined by X-ray analysis. The yellow molecules of 12-14 adopted mono-folded conformations with folding dihedrals in the chalocoxanthylidene moieties of 62.7 degrees (12), 62.4 degrees (13) and 59.9 degrees (14). The folding dihedrals in the respective 1',8'-diazafluorenylidene moieties were very small, ca. 2 degrees, compared with 10.2/8.0 degrees in (9'H-fluoren-9'-ylidene)-9H-selenoxanthene (7). A 5 degree pure twist of C9=C9' in 14 is noted. The degrees of overcrowding in the fjord regions of 12-14 (intramolecular non-bonding distances) were relatively small. The degrees of pyramidalization of C9 and C9' were 17.0/3.0 degrees (12), 17.4/2.4 degrees (13) and 2.2/2.2 degrees (14). These high values in 12 and 13 stem from the resistance of the 1.8-diazafluorenylidene moiety to fold and from the limits in the degrees of folding of the thioxanthylidene and selenoxanthylidene moieties (due to shorter S10-C4a/S10-C10a and Se10-C4a/Se10-C10a bonds, as compared with the respective Te-C bonds in 14). The molecules of 15 and 16 adopt twisted conformations, a conclusion drawn from the 1H NMR chemical shifts of the fjord regions protons (H1 and H8) at 8.70 (15) and 9.00 ppm (16) and from their colors and UV/VIS spectra: 15 is purple (lambdamax = 521 nm) and 16 is orange-red. A comparison of the NMR spectra of 11 and 10 (deltadelta = delta(11) -delta(10)) showed substantial downfield shifts of 0.56-0.62 ppm of the fjord regions protons of twisted 15 and 16: deltadelta (C9) were negative (upfield): -4.0 (12), -3.7 (13), -3.4 (14), -7.1 (15), -5.0 ppm (16), while deltadelta (C9') were positive (downfield) = +6.8 (12), +6.5 (13), +5.8 (14), + 11.7 (15), +7.7 ppm (16). In 15, deltadelta (C9) - deltadelta (C9') = + 18.8 ppm, attributed to a push-pull character and significant contributions of zwitterionic structures in the twisted conformation. The 77Se and 125Te NMR signals of 13 and 14 were shifted upfield relative to the respective fluorenylidene-chalcoxanthene derivatives: deltadelta77Se = 17.2 ppm and deltadelta125Te = 22.0 ppm. The presence of the nitrogen atoms (N1' and N8') in 13 and 14 causes shielding of the selenium and tellurium nuclei.
研究了在峡湾区域引入氮原子和硫族元素桥对过度拥挤的双环芳族烯(1,X不等于Y)(BAE)构象的影响。通过1,8 - 二氮杂 - 9H - 芴 - 9 - 酮(19)/硫代占吨酮(24 - 27)(或/9H - 芴 - 9 - 硫酮(30))的双重挤出偶联反应合成了9 -(9'H - 1',8'-二氮杂芴 - 9'-亚基)-9H - 噻吨(12)、9 -(9H - 1',8'-二氮杂芴 - 9'-亚基)-9H - 硒杂蒽(13)、9 -(9'H - 1',8'-二氮杂芴 - 9'-亚基)-9H - 碲杂蒽(14)、9 -(9'H - 1',8'-芴 - 9 - 亚基)-9H - 占吨(15)和9 -(9'H - 1',8'-芴 - 9'-亚基)-9H - 芴(16)。将1',8'-二氮杂芴 - 9 - 亚基 - 硫族占吨(11)与相应的芴 - 9 - 亚基 - 硫族占吨(10)进行了比较。通过1H、13C、77Se和125Te核磁共振光谱确定了12 - 16的结构。通过X射线分析确定了12 - 14的晶体和分子结构。12 - 14的黄色分子采用单折叠构象,硫族占吨亚基部分的折叠二面角分别为62.7°(12)、62.4°(13)和59.9°(14)。与(9'H - 芴 - 9'-亚基)-9H - 硒杂蒽(7)中的10.2/8.0°相比,相应的1',8'-二氮杂芴亚基部分的折叠二面角非常小,约为2°。注意到14中C9 = C9'有5°的纯扭转。12 - 14峡湾区域的过度拥挤程度(分子内非键合距离)相对较小。C9和C9'的锥化程度分别为17.0/3.0°(12)、17.4/2.4°(13)和2.2/2.2°(14)。12和13中的这些高值源于1,8 - 二氮杂芴亚基部分难以折叠以及硫代占吨亚基和硒杂蒽亚基部分的折叠程度受限(与14中相应的Te - C键相比,S10 - C4a/S10 - C10a和Se10 - C4a/Se10 - C10a键较短)。15和16的分子采用扭曲构象,这是根据峡湾区域质子(H1和H8)在8.70(15)和9.00 ppm(16)处的1H NMR化学位移以及它们的颜色和紫外/可见光谱得出的:15为紫色(λmax = 521 nm),16为橙红色。11和10的NMR光谱比较(Δδ = δ(11) - δ(10))显示,扭曲的15和16的峡湾区域质子有0.56 - 0.62 ppm的显著向低场位移:Δδ(C9)为负(向上场):-4.0(12),-3.7(13),-3.4(14),-7.1(15),-5.0 ppm(16),而Δδ(C9')为正(向下场)= +6.8(12),+6.5(13),+5.8(14),+11.7(15),+7.7 ppm(16)。在15中,Δδ(C9)-Δδ(C9')= +18.8 ppm,这归因于扭曲构象中的推 - 拉特性和两性离子结构的显著贡献。13和14的77Se和125Te NMR信号相对于相应的芴亚基 - 硫族占吨衍生物向上场位移:Δδ77Se = 17.2 ppm,Δδ125Te = 22.0 ppm。13和14中氮原子(N1'和N8')的存在导致硒和碲核的屏蔽。