Suppr超能文献

一种用于增强和简化功能性脑图像数据分析的基于点的新配准方法。

A new point-based warping method for enhanced and simplified analysis of functional brain image data.

作者信息

Pielot Rainer, Scholz Michael, Obermayer Klaus, Scheich Henning, Gundelfinger Eckart D, Hess Andreas

机构信息

Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.

出版信息

Neuroimage. 2003 Aug;19(4):1716-29. doi: 10.1016/s1053-8119(03)00234-9.

Abstract

Comparison of brain imaging data requires the exact matching of data sets from different individuals. Warping methods, used to optimize matching of data sets, can exploit either local gray value distribution or identifiable reference points within the images to be compared. Gray value-based warping, which is more comfortable, cannot be used if gray values include functional information that should be compared between images. A major drawback in the use of point-based warping methods is the lack of methods for efficient and precise definition of reference points (landmarks) within comparable data sets. Here, we present a novel approach to automatically detect sufficient numbers of landmarks, which is based on 3D differential operators. In addition, we have developed a new distance-weighted warping method, which optimizes individual local weighting factors of displacement vectors. The quality of the methods was evaluated using a set of autoradiographs documenting the metabolic activity of gerbil brains after acoustic stimulation. The new warping method was compared with known methods of landmark-based warping, i.e., warping with radial basis functions and with distance-weighted methods. For the data sets presented in this study our new optimized warping method produced an increase in linear cross correlation of 4.44%, an increase in volume overlap index of 1.55%, and a decrease in the registration error of 36.2%. In addition, the detection of functional differences was improved after warping. Therefore, the new method is a powerful tool, which enhances the comparison of complex biological structures and the quantitative evaluation of functional imaging data.

摘要

脑成像数据的比较需要精确匹配来自不同个体的数据集。用于优化数据集匹配的变形方法可以利用局部灰度值分布或待比较图像中的可识别参考点。基于灰度值的变形更简便,但如果灰度值包含图像间应比较的功能信息,则无法使用。基于点的变形方法使用中的一个主要缺点是缺乏在可比数据集中高效精确地定义参考点(地标)的方法。在此,我们提出一种基于3D微分算子自动检测足够数量地标的新方法。此外,我们开发了一种新的距离加权变形方法,该方法可优化位移向量的各个局部加权因子。使用一组记录沙鼠脑在声刺激后代谢活性的放射自显影片对这些方法的质量进行了评估。将新的变形方法与已知的基于地标的变形方法进行了比较,即使用径向基函数的变形和距离加权方法。对于本研究中呈现的数据集,我们新的优化变形方法使线性互相关增加了4.44%,体积重叠指数增加了1.55%,配准误差降低了36.2%。此外,变形后功能差异的检测得到了改善。因此,新方法是一种强大的工具,可增强对复杂生物结构的比较以及对功能成像数据的定量评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验