Suppr超能文献

用于大鼠脑放射自显影片自动去扭曲的互信息

Mutual information for automated unwarping of rat brain autoradiographs.

作者信息

Kim B, Boes J L, Frey K A, Meyer C R

机构信息

Department of Radiology, University of Michigan Medical Center, Ann Arbor 48109-0553, USA.

出版信息

Neuroimage. 1997 Jan;5(1):31-40. doi: 10.1006/nimg.1996.0251.

Abstract

An automated multimodal warping based on mutual information metric (MI) as a mapping cost function is demonstrated. Mutual information (I) is calculated from a two-dimensional (2D) gray scale histogram of an image pair, and MI (= -I) provides a matching cost function which can be effective in registration of two- or three-dimensional data sets independent of modality. Most histological image data, though information rich and high resolution, present nonlinear deformations due to the specimen sectioning and need reconstitution into deformation-corrected volumes prior to geometric mapping to an anatomical volume for spatial analyses. Section alignment via automatic 2D registrations employing MI as a global cost function and thin-plate-spline (TPS) warping is applied to deoxy-D-[14C]glucose autoradiographic image slices of a rat brain with video reference images of the uncut block face to reconstitute a cerebral glucose metabolic volume data. Unlike the traditional feature-based TPS warping algorithms, initial control points are defined independently from feature landmarks. Registration quality using automated multimodal image warping is validated by comparing MIs of the image pair registered by automated affine registration and manual warping method. The MI proves to be a robust objective matching cost function effective for automatic multimodality warping for 2D data sets and can be readily applied to volume registrations.

摘要

展示了一种基于互信息度量(MI)作为映射成本函数的自动多模态变形方法。互信息(I)是根据图像对的二维(2D)灰度直方图计算得出的,而MI(= -I)提供了一种匹配成本函数,该函数在独立于模态的二维或三维数据集配准中可能有效。大多数组织学图像数据虽然信息丰富且分辨率高,但由于标本切片会出现非线性变形,在进行几何映射到解剖体积以进行空间分析之前,需要重新构建为变形校正后的体积。通过使用MI作为全局成本函数的自动二维配准和薄板样条(TPS)变形来进行切片对齐,应用于大鼠脑的脱氧-D-[14C]葡萄糖放射自显影图像切片,并与未切割块面的视频参考图像一起,以重建脑葡萄糖代谢体积数据。与传统的基于特征的TPS变形算法不同,初始控制点是独立于特征地标定义的。通过比较自动仿射配准和手动变形方法配准的图像对的MI,验证了使用自动多模态图像变形的配准质量。结果证明,MI是一种强大的客观匹配成本函数,对二维数据集的自动多模态变形有效,并且可以很容易地应用于体积配准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验