Suppr超能文献

蔡司远心眼底相机的眼放大率计算机计算方案

Computerised calculation scheme for ocular magnification with the Zeiss telecentric fundus camera.

作者信息

Langenbucher Achim, Seitz Berthold, Viestenz Arne

机构信息

Department of Ophthalmology, University of Erlangen-Nürnberg, Schwabachanlage 6, D-91054 Erlangen, Germany.

出版信息

Ophthalmic Physiol Opt. 2003 Sep;23(5):449-55. doi: 10.1046/j.1475-1313.2003.00140.x.

Abstract

Littmann (1982) described a method to determine the magnification of the eye in order to relate the size of a retinal feature to its measured image size on a telecentric fundus camera film. This required information only about ametropia and corneal curvature. Several other methods have been reported since then which consider other biometric data to enhance the accuracy of this classical method. The purpose of this study is to describe a numerical calculation scheme to determine the magnification q of the eye in two cardinal meridians using paraxial raytracing. Our calculation scheme is based on ametropia, keratometry, as well as biometric data such as axial length, anterior chamber depth and thickness of the crystalline lens. It is described step-by-step in order (1) to determine the refractive powers of both surfaces of the crystalline lens, which are not directly measurable in vivo, (2) to derive the retinal image conjugate to a circular object using paraxial raytracing, (3) to fit an ellipse to the retinal image, (4) to determine the secondary principal points (Gaussian length) separately for both cardinal meridians and (5) to calculate the ocular magnification q. The power of the crystalline lens is estimated to compensate for the spherocylindrical refraction at the spectacle plane and the corneal refraction with an astigmatic component thus creating a sharp image focused at the retinal plane. The capabilities of this computing scheme are demonstrated with five clinical examples and are related to the respective values of the classical Littmann formula as well as to enhanced methods described by Bennett (1988), Bennett et al. (1994) and Garway-Heath et al. (1998).

摘要

利特曼(1982年)描述了一种确定眼睛放大率的方法,以便将视网膜特征的大小与其在远心眼底照相机胶片上测量的图像大小相关联。这只需要关于屈光不正和角膜曲率的信息。从那时起,又报道了其他几种方法,这些方法考虑了其他生物特征数据以提高这种经典方法的准确性。本研究的目的是描述一种数值计算方案,使用近轴光线追迹来确定眼睛在两个主要子午线上的放大率q。我们的计算方案基于屈光不正、角膜曲率测量,以及诸如眼轴长度、前房深度和晶状体厚度等生物特征数据。它按以下步骤进行描述:(1)确定晶状体两个表面的屈光力,这在体内无法直接测量;(2)使用近轴光线追迹得出与圆形物体共轭的视网膜图像;(3)将椭圆拟合到视网膜图像;(4)分别为两个主要子午线确定二次主点(高斯长度);(5)计算眼放大率q。估计晶状体的屈光力以补偿眼镜平面处的球柱面屈光不正和具有散光成分的角膜屈光不正,从而在视网膜平面上形成清晰聚焦的图像。通过五个临床实例展示了该计算方案的能力,并将其与经典利特曼公式的相应值以及贝内特(1988年)、贝内特等人(1994年)和加韦-希思等人(1998年)描述的改进方法的值相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验