Yen Ten-Yang, Macher Bruce A, Bryson Steve, Chang Xiaoqing, Tvaroska Igor, Tse Roderick, Takeshita Sawako, Lew April M, Datti Alessandro
Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
J Biol Chem. 2003 Nov 14;278(46):45864-81. doi: 10.1074/jbc.M303851200. Epub 2003 Sep 3.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.
核心2β1,6-N-乙酰氨基葡萄糖基转移酶I(C2GnT-I)在黏蛋白型O-聚糖的生物合成中起关键作用,黏蛋白型O-聚糖在细胞黏附中作为配体。为阐明该酶的三维结构以用于治疗相关酶抑制剂的计算机辅助设计,我们研究了纯化的小鼠重组酶中半胱氨酸残基在二硫键中的参与情况。在存在和不存在二硫苏糖醇的情况下,通过液相色谱/电喷雾电离串联质谱法确定游离和二硫键连接的半胱氨酸残基模式。在两种条件下,九个高度保守的半胱氨酸残基中,一个(Cys217)是游离硫醇,八个参与二硫键形成,分别为Cys59-Cys413、Cys100-Cys172、Cys151-Cys199和Cys372-Cys381之间形成的二硫键对。β1,6-N-乙酰氨基葡萄糖基转移酶家族中唯一的非保守残基Cys235在存在二硫苏糖醇时也是游离硫醇;然而,在没有还原剂的情况下,Cys235形成分子间二硫键。用硫醇反应剂进行的生化研究表明,至少一个游离半胱氨酸影响酶活性,且靠近UDP-GlcNAc结合位点。Cys217→Ser突变酶对硫醇反应物不敏感,其动力学性质与野生型酶几乎相同,从而表明Cys217虽然本身不是活性所必需的,但却是修饰时导致酶失活的唯一硫醇。基于游离和二硫键连接的半胱氨酸残基模式,以及折叠识别/穿线和同源建模方法,我们计算了该酶的三维模型,并使用T4噬菌体β-葡萄糖基转移酶折叠对其进行了优化。