Suppr超能文献

葡萄糖转运蛋白的功能受转运蛋白寡聚结构的控制。单个分子内二硫键促进GLUT1四聚化。

Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.

作者信息

Zottola R J, Cloherty E K, Coderre P E, Hansen A, Hebert D N, Carruthers A

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA.

出版信息

Biochemistry. 1995 Aug 1;34(30):9734-47. doi: 10.1021/bi00030a011.

Abstract

The human erythrocyte glucose transporter is an allosteric complex of four GLUT1 proteins whose structure and substrate binding properties are stabilized by reductant-sensitive, noncovalent subunit interactions [Hebert, D. N., & Carruthers, A. (1992) J. Biol. Chem. 267, 23829-23838]. In the present study, we use biochemical and molecular approaches to isolate specific determinants of transporter oligomeric structure and transport function. When unfolded in denaturant, each subunit (GLUT1 protein) of the transporter complex exposes two sulfhydryl groups. Four additional thiol groups are accessible following subunit exposure to reductant. Assays of subunit disulfide bridge content suggest that two inaccessible sulfhydryl groups form an internal disulfide bridge. Differential alkylation/peptide mapping/N-terminal sequence analyses show that a GLUT1 carboxyl-terminal peptide (residues 232-492) contains three inaccessible sulfhydryl groups and that an N-terminal GLUT1 peptide (residues 147-261/299) contains two accessible thiols. The carboxyl-terminal peptide most likely contains the intramolecular disulfide bridge since neither its yield nor its electrophoretic mobility is altered by addition of reductant. Each GLUT1 cysteine was changed to serine by oligonucleotide-directed, in vitro mutagenesis. The resulting transport proteins were expressed in CHO cells and screened by immunofluorescence microscopy for their ability to expose tetrameric GLUT1-specific epitopes. Serine substitution at cysteine residues 133, 201, 207, and 429 does not inhibit exposure of tetrameric GLUT1-specific epitopes. Serine substitution at cysteines 347 or 421 prevents exposure of tetrameric GLUT1-specific epitopes. Hydrodynamic analysis of GLUT1/GLUT4 chimeras expressed in and subsequently solubilized from CHO cells indicates that GLUT1 residues 1-199 promote chimera dimerization and permit GLUT1/chimera heterotetramerization. This GLUT1 N-terminal domain is insufficient for chimera tetramerization which additionally requires GLUT1 residues 200-463. Extracellular reductants (dithiothreitol, beta-mercaptoethanol, or glutathione) reduce erythrocyte 3-O-methylglucose uptake by up to 15-fold. This noncompetitive inhibition of sugar uptake is reversed by the cell-impermeant, oxidized glutathione. Reductant is without effect on sugar exit from erythrocytes. Dithiothreitol doubles the cytochalasin B binding capacity of erythrocyte-resident glucose transporter, abolishes allosteric interactions between substrate binding sites on adjacent subunits, and occludes tetrameric GLUT1-specific GLUT1 epitopes in situ. CHO cell-resident GLUT1 structure and transport function are similarly affected by extracellular reductant. We conclude that each subunit of the glucose transporter contains an extracellular disulfide bridge (Cys347 and Cys421) that stabilizes transporter oligomeric structure and thereby accelerates transport function.

摘要

人类红细胞葡萄糖转运蛋白是由四个GLUT1蛋白组成的变构复合物,其结构和底物结合特性通过对还原剂敏感的非共价亚基相互作用得以稳定[赫伯特,D. N.,& 卡拉瑟斯,A.(1992年)《生物化学杂志》267卷,23829 - 23838页]。在本研究中,我们采用生物化学和分子方法来分离转运蛋白寡聚体结构和转运功能的特定决定因素。当在变性剂中展开时,转运复合物的每个亚基(GLUT1蛋白)会暴露两个巯基。亚基暴露于还原剂后,另外四个巯基变得可及。亚基二硫键含量的测定表明,两个不可及的巯基形成一个内部二硫键。差异烷基化/肽图谱分析/N端序列分析表明,一个GLUT1羧基末端肽(第232 - 492位氨基酸残基)含有三个不可及的巯基,而一个GLUT1 N端肽(第147 - 261/299位氨基酸残基)含有两个可及的巯基。羧基末端肽很可能包含分子内二硫键,因为添加还原剂既不改变其产量也不改变其电泳迁移率。通过寡核苷酸定向的体外诱变,将每个GLUT1半胱氨酸都替换为丝氨酸。将所得的转运蛋白在CHO细胞中表达,并通过免疫荧光显微镜筛选其暴露四聚体GLUT1特异性表位的能力。将第133、201、207和429位半胱氨酸残基替换为丝氨酸并不抑制四聚体GLUT1特异性表位的暴露。将第347或421位半胱氨酸替换为丝氨酸会阻止四聚体GLUT1特异性表位的暴露。对在CHO细胞中表达并随后从CHO细胞中溶解的GLUT1/GLUT4嵌合体进行流体动力学分析表明,GLUT1的第1 - 199位氨基酸残基促进嵌合体二聚化,并允许GLUT1/嵌合体异源四聚化。这个GLUT1 N端结构域不足以使嵌合体四聚化,嵌合体四聚化还需要GLUT1的第200 - 463位氨基酸残基。细胞外还原剂(二硫苏糖醇、β - 巯基乙醇或谷胱甘肽)可使红细胞对3 - O - 甲基葡萄糖的摄取降低多达15倍。这种对糖摄取的非竞争性抑制可被细胞不透性的氧化型谷胱甘肽逆转。还原剂对红细胞中糖的流出没有影响。二硫苏糖醇使驻留在红细胞中的葡萄糖转运蛋白的细胞松弛素B结合能力加倍,消除相邻亚基上底物结合位点之间的变构相互作用,并原位封闭四聚体GLUT1特异性的GLUT1表位。驻留在CHO细胞中的GLUT1结构和转运功能同样受到细胞外还原剂的影响。我们得出结论,葡萄糖转运蛋白的每个亚基都含有一个细胞外二硫键(半胱氨酸347和半胱氨酸421),该二硫键稳定转运蛋白的寡聚体结构,从而加速转运功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验