Hwang Jinah, Saha Aniket, Boo Yong Chool, Sorescu George P, McNally J Scott, Holland Steven M, Dikalov Sergei, Giddens Don P, Griendling Kathy K, Harrison David G, Jo Hanjoong
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
J Biol Chem. 2003 Nov 21;278(47):47291-8. doi: 10.1074/jbc.M305150200. Epub 2003 Sep 4.
Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.
在分支动脉中暴露于振荡剪切力(OS)的动脉区域是动脉粥样硬化的易损部位,而层流剪切力(LS)作用的区域则相对受到较好的保护。在此,我们检验了以下假设:OS和LS对内皮型NAD(P)H氧化酶产生超氧阴离子(O2-)的调节作用不同,而这反过来又导致它们对关键的致动脉粥样硬化事件——单核细胞黏附产生相反的影响。我们使用了从C57BL/6小鼠(MAE-C57)和p47phox基因敲除小鼠(MAE-p47-/-)获取的主动脉内皮细胞,p47phox基因敲除小鼠缺乏NAD(P)H氧化酶的一个组分。通过二氢乙锭染色以及使用电子自旋捕获剂甲氧基羰基-2,2,5,5-四甲基吡咯烷的电子自旋共振来测定O2-的产生。MAE-C57细胞经动脉水平的OS(±5达因/平方厘米)慢性暴露(18小时)后,O2-生成增加了2倍,单核细胞黏附增加了3倍,而与静态条件相比慢性LS(15达因/平方厘米,18小时)则显著降低了单核细胞黏附和O2-生成。相比之下,LS和OS均无法诱导MAE-p47-/-细胞产生O2-和单核细胞黏附。用细胞可渗透的超氧化物歧化酶化合物聚乙二醇-超氧化物歧化酶处理MAE-C57细胞,也可抑制OS诱导的单核细胞黏附。此外,在MAE-p47-/-细胞中过表达p47phox可恢复OS诱导的O2-生成和单核细胞黏附。这些结果表明,内皮细胞长期暴露于OS会刺激由p47phox依赖性NAD(P)H氧化酶产生的O2-及其衍生物,进而导致单核细胞黏附,这是一个早期且关键的致动脉粥样硬化事件。