Lomax Terri L, Findlay Kirk A, White T J, Winner William E
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
Gravit Space Biol Bull. 2003 Jun;16(2):91-9.
Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.
对于任何长期的太空探索或居住而言,植物在提供生命保障方面将发挥至关重要的作用。我们正在评估一种适应性系统的可行性,该系统用于测量植物对任何独特太空条件的反应,并在这些条件下优化植物性能。拟议的系统基于多种系统的独特组合,包括植物基因组学领域的快速进展、用于测量基因表达的微阵列技术、生物信息学、基因途径和网络、受控环境中的生理测量,以及自动化和机器人技术的进步。由此产生的用于监测和优化植物反应的灵活模块将能够作为一个盒式组件插入各种平台和任务中,用于实验或生命保障目的。未来植物功能基因组学项目的结果极有可能应用于最有可能在太空环境中使用的那些植物物种。最终,将有可能利用植物遗传评估和控制系统来优化任何植物在任何太空环境中的性能。除了能够有效控制环境参数以提高植物生产力和实现其他生命保障功能外,拟议的模块还将允许选择或培育能够在特定太空环境中茁壮成长的植物。拟议的项目将在近期和中期推动人类在国际空间站和自由飞行卫星上的太空探索,并在远期推动执行更长时间的任务以及最终实现太空居住。