Suppr超能文献

评估不同暴露指标和时间活动数据对预测24小时个人细颗粒物(PM2.5)暴露的重要性。

Assessing the importance of different exposure metrics and time-activity data to predict 24-H personal PM2.5 exposures.

作者信息

Chang Li-Te, Koutrakis Petros, Catalano Paul J, Suh Helen H

机构信息

Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan.

出版信息

J Toxicol Environ Health A. 2003;66(16-19):1825-46. doi: 10.1080/15287390306431.

Abstract

Personal PM(2.5) data from two recent exposure studies, the Scripted Activity Study and the Older Adults Study, were used to develop models predicting 24-h personal PM(2.5) exposures. Both studies were conducted concurrently in the summer of 1998 and the winter of 1999 in Baltimore, MD. In the Scripted Activity Study, 1-h personal PM(2.5) exposures were measured. Data were used to identify significant factors affecting personal exposures and to develop 1-h personal exposure models for five different micro-environments. By incorporating the time-activity diary data, these models were then combined to develop a time-weighted microenvironmental personal model (model M1AD) to predict the 24-h PM(2.5) exposures measured for individuals in the Older Adults Study. Twenty-four-hour time-weighted models were also developed using 1-h ambient PM(2.5) levels and time-activity data (model A1AD) or using 24-h ambient PM(2.5) levels and time-activity data (model A24AD). The performance of these three models was compared to that using 24-h ambient concentrations alone (model A24). Results showed that factors affecting 1-h personal PM(2.5) exposures included air conditioning status and the presence of environmental tobacco smoke (ETS) for indoor micro-environments, consistent with previous studies. ETS was identified as a significant contributor to measured 24-h personal PM(2.5) exposures. Staying in an ETS-exposed microenvironment for 1 h elevated 24-h personal PM(2.5) exposures by approximately 4 microg/m 3 on average. Cooking and washing activities were identified in the winter as significant contributors to 24-h personal exposures as well, increasing 24-h personal PM(2.5) exposures by about 4 and 5 microg/m 3 per hour of activity, respectively. The ability of 3 microenvironmental personal exposure models to estimate 24-h personal PM(2.5) exposures was generally comparable to and consistently greater than that of model A24. Results indicated that using time-activity data with 1-h exposure information, either as micro-environment-specific exposures (model M1AD) or as ambient concentrations (model A1AD), improves our ability to estimate 24-h personal PM(2.5) exposure over the model using 24-h averaged ambient levels alone (model A24). Model performance was higher in the summer than in the winter season. In addition, higher crude R(2) values were reported for subjects participating in both seasons, where the R(2) values equaled.53,.55,.46, and.38 for models M1AD, A1AD, A24AD, and A24, respectively. The low predictive ability of the microenvironmental exposure models in the winter might, in part, be attributed to the narrow dynamic range of personal PM(2.5) exposures.

摘要

来自两项近期暴露研究(脚本活动研究和老年人研究)的个人细颗粒物(PM2.5)数据被用于建立预测24小时个人PM2.5暴露的模型。这两项研究于1998年夏季和1999年冬季在马里兰州巴尔的摩同时进行。在脚本活动研究中,测量了1小时的个人PM2.5暴露。数据被用于确定影响个人暴露的重要因素,并为五个不同的微环境建立1小时个人暴露模型。通过纳入时间 - 活动日记数据,然后将这些模型结合起来,开发出一个时间加权微环境个人模型(模型M1AD),以预测老年人研究中个体测量的24小时PM2.5暴露。还使用1小时环境PM2.5水平和时间 - 活动数据(模型A1AD)或使用24小时环境PM2.5水平和时间 - 活动数据(模型A24AD)开发了24小时时间加权模型。将这三个模型的性能与仅使用24小时环境浓度的模型(模型A24)进行了比较。结果表明,影响1小时个人PM2.5暴露的因素包括室内微环境的空调状态和环境烟草烟雾(ETS)的存在,这与先前的研究一致。ETS被确定为测量的24小时个人PM2.5暴露的重要贡献因素。在ETS暴露的微环境中停留1小时,平均使24小时个人PM2.5暴露升高约4微克/立方米。烹饪和洗涤活动在冬季也被确定为24小时个人暴露的重要贡献因素,每小时活动分别使24小时个人PM2.5暴露增加约4和5微克/立方米。三个微环境个人暴露模型估计24小时个人PM2.5暴露的能力通常与模型A24相当,并且始终大于模型A24。结果表明,使用带有1小时暴露信息的时间 - 活动数据,无论是作为特定微环境的暴露(模型M1AD)还是作为环境浓度(模型A1AD),都比仅使用24小时平均环境水平的模型(模型A24)提高了我们估计24小时个人PM2.5暴露的能力。夏季模型性能高于冬季。此外,参与两个季节的受试者报告的粗R²值更高,其中模型M1AD、A1AD、A24AD和A24的R²值分别为0.53、0.55、0.46和0.38。冬季微环境暴露模型的低预测能力部分可能归因于个人PM2.5暴露的动态范围狭窄。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验