Mouhat Stéphanie, Mosbah Amor, Visan Violeta, Wulff Heike, Delepierre Muriel, Darbon Hervé, Grissmer Stephan, De Waard Michel, Sabatier Jean-Marc
Laboratoire International Associé d'Ingénierie Biomoléculaire, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France.
Biochem J. 2004 Jan 1;377(Pt 1):25-36. doi: 10.1042/BJ20030115.
Pi1 is a 35-residue scorpion toxin cross-linked by four disulphide bridges that acts potently on both small-conductance Ca2+-activated (SK) and voltage-gated (Kv) K+ channel subtypes. Two approaches were used to investigate the relative contribution of the Pi1 functional dyad (Tyr-33 and Lys-24) to the toxin action: (i) the chemical synthesis of a [A24,A33]-Pi1 analogue, lacking the functional dyad, and (ii) the production of a Pi1 analogue that is phosphorylated on Tyr-33 (P-Pi1). According to molecular modelling, this phosphorylation is expected to selectively impact the two amino acid residues belonging to the functional dyad without altering the nature and three-dimensional positioning of other residues. P-Pi1 was directly produced by peptide synthesis to rule out any possibility of trace contamination by the unphosphorylated product. Both Pi1 analogues were compared with synthetic Pi1 for bioactivity. In vivo, [A24,A33]-Pi1 and P-Pi1 are lethal by intracerebroventricular injection in mice (LD50 values of 100 and 40 microg/mouse, respectively). In vitro, [A24,A33]-Pi1 and P-Pi1 compete with 125I-apamin for binding to SK channels of rat brain synaptosomes (IC50 values of 30 and 10 nM, respectively) and block rat voltage-gated Kv1.2 channels expressed in Xenopus laevis oocytes (IC50 values of 22 microM and 75 nM, respectively), whereas they are inactive on Kv1.1 or Kv1.3 channels at micromolar concentrations. Therefore, although both analogues are less active than Pi1 both in vivo and in vitro, the integrity of the Pi1 functional dyad does not appear to be a prerequisite for the recognition and binding of the toxin to the Kv1.2 channels, thereby highlighting the crucial role of other toxin residues with regard to Pi1 action on these channels. The computed simulations detailing the docking of Pi1 peptides on to the Kv1.2 channels support an unexpected key role of specific basic amino acid residues, which form a basic ring (Arg-5, Arg-12, Arg-28 and Lys-31 residues), in toxin binding.
Pi1是一种由四个二硫键交联的35个氨基酸残基的蝎毒素,对小电导Ca2+激活(SK)和电压门控(Kv)钾通道亚型均有强大作用。采用两种方法研究Pi1功能二元组(酪氨酸-33和赖氨酸-24)对毒素作用的相对贡献:(i)化学合成缺乏功能二元组的[A24,A33]-Pi1类似物,以及(ii)制备在酪氨酸-33上磷酸化的Pi1类似物(P-Pi1)。根据分子建模,预计这种磷酸化会选择性地影响属于功能二元组的两个氨基酸残基,而不会改变其他残基的性质和三维定位。通过肽合成直接制备P-Pi1,以排除未磷酸化产物微量污染的任何可能性。将两种Pi1类似物与合成的Pi1进行生物活性比较。在体内,通过脑室注射,[A24,A33]-Pi1和P-Pi1对小鼠具有致死性(LD50值分别为100和40微克/小鼠)。在体外,[A24,A33]-Pi1和P-Pi1与125I-蜂毒明肽竞争结合大鼠脑突触体的SK通道(IC50值分别为30和10纳摩尔),并阻断非洲爪蟾卵母细胞中表达的大鼠电压门控Kv1.2通道(IC50值分别为22微摩尔和75纳摩尔),而在微摩尔浓度下它们对Kv1.1或Kv1.3通道无活性。因此,尽管两种类似物在体内和体外的活性均低于Pi1,但Pi1功能二元组的完整性似乎不是毒素识别和结合Kv1.2通道的先决条件,从而突出了其他毒素残基在Pi1对这些通道作用方面的关键作用。详细描述Pi1肽与Kv1.2通道对接的计算模拟支持了特定碱性氨基酸残基的意外关键作用,这些残基形成一个碱性环(精氨酸-5、精氨酸-12、精氨酸-28和赖氨酸-31残基),在毒素结合中起作用。