Petrat Frank, Paluch Sandra, Dogruöz Elke, Dörfler Petra, Kirsch Michael, Korth Hans-Gert, Sustmann Reiner, de Groot Herbert
Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstrasse 55, D-45122 Essen, Germany.
J Biol Chem. 2003 Nov 21;278(47):46403-13. doi: 10.1074/jbc.M305291200. Epub 2003 Sep 8.
Enzymatic reduction of physiological Fe(III) complexes of the "labile iron pool" has not been studied so far. By use of spectrophotometric assays based on the oxidation of NAD(P)H and formation of [Fe(II) (1,10-phenanthroline)3]2+ as well as by utilizing electron paramagnetic resonance spectrometry, it was demonstrated that the NAD(P)H-dependent flavoenzyme lipoyl dehydrogenase (diaphorase, EC 1.8.1.4) effectively catalyzes the one-electron reduction of Fe(III) complexes of citrate, ATP, and ADP at the expense of the co-enzymes NAD(P)H. Deactivated or inhibited lipoyl dehydrogenase did not reduce the Fe(III) complexes. Likewise, in the absence of NAD(P)H or in the presence of NAD(P)+, Fe(III) reduction could not be detected. The fact that reduction also occurred in the absence of molecular oxygen as well as in the presence of superoxide dismutase proved that the Fe(III) reduction was directly linked to the enzymatic activity of lipoyl dehydrogenase and not mediated by O2. Kinetic studies revealed different affinities of lipoyl dehydrogenase for the reduction of the low molecular weight Fe(III) complexes in the relative order Fe(III)-citrate > Fe(III)-ATP > Fe(III)-ADP (half-maximal velocities at 346-485 microm). These Fe(III) complexes were enzymatically reduced also by other flavoenzymes, namely glutathione reductase (EC 1.6.4.2), cytochrome c reductase (EC 1.6.99.3), and cytochrome P450 reductase (EC 1.6.2.4) with somewhat lower efficacy. The present data suggest a (patho)physiological role for lipoyl dehydrogenase and other flavoenzymes in intracellular iron metabolism.
迄今为止,尚未对“不稳定铁池”中生理态Fe(III)配合物的酶促还原进行研究。通过基于NAD(P)H氧化以及[Fe(II)(1,10 - 菲咯啉)3]2+形成的分光光度法测定,并利用电子顺磁共振光谱法,结果表明,依赖NAD(P)H的黄素酶硫辛酰胺脱氢酶(黄递酶,EC 1.8.1.4)以辅酶NAD(P)H为代价,有效地催化柠檬酸、ATP和ADP的Fe(III)配合物的单电子还原。失活或受抑制的硫辛酰胺脱氢酶不会还原Fe(III)配合物。同样,在不存在NAD(P)H或存在NAD(P)+的情况下,未检测到Fe(III)的还原。在没有分子氧以及存在超氧化物歧化酶的情况下仍发生还原这一事实证明,Fe(III)的还原与硫辛酰胺脱氢酶的酶活性直接相关,而非由O2介导。动力学研究揭示了硫辛酰胺脱氢酶对低分子量Fe(III)配合物还原的不同亲和力,相对顺序为Fe(III)-柠檬酸>Fe(III)-ATP>Fe(III)-ADP(346 - 485微米处的半数最大速度)。这些Fe(III)配合物也能被其他黄素酶酶促还原,即谷胱甘肽还原酶(EC 1.6.4.2)、细胞色素c还原酶(EC 1.6.99.3)和细胞色素P450还原酶(EC 1.6.2.4),但效率略低。目前的数据表明硫辛酰胺脱氢酶和其他黄素酶在细胞内铁代谢中具有(病理)生理作用。