Douglass John K, Strausfeld Nicholas J
Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
Microsc Res Tech. 2003 Oct 1;62(2):132-50. doi: 10.1002/jemt.10367.
Anatomical methods have identified conserved neuronal morphologies and synaptic relationships among small-field retinotopic neurons in insect optic lobes. These conserved cell shapes occur across many species of dipteran insects and are also shared by Lepidoptera and Hymenoptera. The suggestion that such conserved neurons should participate in motion computing circuits finds support from intracellular recordings as well as older studies that used radioactive deoxyglucose labeling to reveal strata with motion-specific activity in an achromatic neuropil called the lobula plate. While intracellular recordings provide detailed information about the motion-sensitive or motion-selective responses of identified neurons, a full understanding of how arrangements of identified neurons compute and integrate information about visual motion will come from a multidisciplinary approach that includes morphological circuit analysis, the use of genetic mutants that exhibit specific deficits in motion processing, and biomimetic models. The latter must be based on the organization and connections of real neurons, yet provide output properties similar to those of more traditional theoretical models based on behavioral observations that date from the 1950s. Microsc. Res. Tech. 62:132-150, 2003.
解剖学方法已经确定了昆虫视叶中小视野视网膜拓扑神经元之间保守的神经元形态和突触关系。这些保守的细胞形态存在于许多双翅目昆虫物种中,鳞翅目和膜翅目昆虫也有。认为这种保守神经元应参与运动计算回路的观点,得到了细胞内记录以及早期研究的支持,早期研究使用放射性脱氧葡萄糖标记来揭示在一个称为小叶板的消色差神经纤维层中具有运动特异性活动的层次。虽然细胞内记录提供了有关已识别神经元的运动敏感或运动选择性反应的详细信息,但要全面了解已识别神经元的排列如何计算和整合视觉运动信息,将来自多学科方法,包括形态学电路分析、使用在运动处理方面表现出特定缺陷的基因变异体以及仿生模型。后者必须基于真实神经元的组织和连接,但要提供与基于20世纪50年代行为观察的更传统理论模型类似的输出特性。《显微镜研究与技术》62:132 - 150,2003年。