Douglass J K, Strausfeld N J
Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson 85721, USA.
J Neurosci. 1996 Aug 1;16(15):4551-62. doi: 10.1523/JNEUROSCI.16-15-04551.1996.
The neural circuitry of motion processing in insects, as in primates, involves the segregation of different types of visual information into parallel retinotopic pathways that subsequently are reunited at higher levels. In insects, achromatic, motion-sensitive pathways to the lobula plate are separated from color-processing pathways to the lobula. Further parallel subdivisions of the retinotopic pathways to the lobula plate have been suggested from anatomical observations. Here, we provide direct physiological evidence that the two most prominent of these latter pathways are, indeed, functionally distinct: recordings from the retinotopic pathway defined by small-field bushy T-cells (T4) demonstrate only weak directional selectivity to motion, in striking contrast with previously demonstrated strong directional selectivity in the second, T5-cell, pathway. Additional intracellular recordings and anatomical descriptions have been obtained from other identified neurons that may be crucial in early motion detection and processing: a deep medulla amacrine cell that seems well suited to provide the lateral interactions among retinotopic elements required for motion detection; a unique class of Y-cells that provide small-field, directionally selective feedback from the lobula plate to the medulla; and a new heterolateral lobula plate tangential cell that collates directional, motion-sensitive inputs. These results add important new elements to the set of identified neurons that process motion information. The results suggest specific hypotheses regarding the neuronal substrates for motion-processing circuitry and corroborate behavioral studies in bees that predict distinct pathways for directional and nondirectional motion.
与灵长类动物一样,昆虫运动处理的神经回路涉及将不同类型的视觉信息分离到并行的视网膜拓扑通路中,这些通路随后在更高层次上重新整合。在昆虫中,通向小叶板的无色、对运动敏感的通路与通向小叶的颜色处理通路是分开的。根据解剖学观察结果,有人提出通向小叶板的视网膜拓扑通路还有进一步的并行细分。在这里,我们提供了直接的生理学证据,证明后一种通路中最突出的两条通路在功能上确实是不同的:从小场浓密T细胞(T4)定义的视网膜拓扑通路记录显示,对运动的方向选择性很弱,这与之前在第二条通路(T5细胞通路)中证明的强方向选择性形成了鲜明对比。我们还从其他已识别的神经元获得了额外的细胞内记录和解剖学描述,这些神经元可能在早期运动检测和处理中至关重要:一种深髓无长突细胞,似乎非常适合提供运动检测所需的视网膜拓扑元素之间的侧向相互作用;一类独特的Y细胞,从小叶板向髓质提供小场、方向选择性反馈;以及一种新的异侧小叶板切向细胞,它整合方向敏感的运动输入。这些结果为处理运动信息的已识别神经元集合增添了重要的新元素。这些结果提出了关于运动处理电路神经元底物的具体假设,并证实了蜜蜂的行为研究,这些研究预测了方向运动和非方向运动的不同通路。